The multifaceted nature of the skills required by new-age professions, reflecting the dynamic evolution of the global workforce, is the focal point of this study. The objective was to synthesize the existing academic literature on these skills, employing a scientometric approach . This involved a comprehensive analysis of 367 articles from the merged Scopus and Web of Science databases. Science. We observed a significant increase in annual scientific output, with an increase of 87.01% over the last six years. The United States emerged as the most prolific contributor, responsible for 21.61% of total publications and receiving 34.31% of all citations. Using the Tree algorithm of Science (ToS), we identified fundamental contributions within this domain. The ToS outlined three main research streams: the convergence of gender, technology, and automation; defining elements of future work; and the dualistic impact of AI on work, seen as both a threat and an opportunity. Furthermore, our study explored the effects of automation on quality of life, the evolving meaning of work, and the emergence of new skills. A critical analysis was also conducted on how to balance technology with humanism, addressing challenges and strategies in workforce automation. This study offers a comprehensive scientometric view of new-age professions, highlighting the most important trends, challenges, and opportunities in this rapidly evolving field.
The rise of internet-based pharmacies has transformed the healthcare sector, giving patients access to medications, information, and direct interaction with pharmacists. While online pharmacies have become popular around the world, there are challenges hindering their widespread use in developing countries due to a limited understanding of the factors affecting their acceptance and usage. To bridge this knowledge gap, a study utilized a model combining the unified theory of acceptance and use of technology (UTAUT 2) with the technology acceptance model (TAM) to explore the drivers behind online pharmacy usage in Oman. Through this framework, twelve hypotheses were. A survey involving 378 individuals familiar with online pharmacies was conducted. Structural equation modeling (SEM) was applied to analyze the data and test these hypotheses. The results indicate that factors such as perceived expectancy effort expectancy and facilitating conditions hedonic motivation, habit perceived risk, technology trust, and technology awareness play roles in influencing the adoption of online pharmacies in Oman. The findings suggest that personal innovation plays a moderating role in the connection between perceived risk and behavioral intention, while it has a negative moderating influence on the relationship between technology trust and behavioral intention. Word of mouth was identified as a moderator in enhancing the correlation between behavioral intention and online pharmacy adoption. This research emphasizes the moderating relationship of personal innovation and word of mouth on shaping consumer attitudes towards online pharmacies and their acceptance. In summary, these results add to the existing knowledge on pharmacy adoption and in developed areas such as provide practical insights for online pharmacy providers to improve their offerings and attract a larger customer base.
Soil erosion is characterized by the wearing away or loss of the uppermost layer of soil, driven by water, wind, and human activities. This process constitutes a significant environmental issue, with adverse effects on water quality, soil health, and the overall stability of ecosystems across the globe. This study focuses on the Anuppur district of Madhya Pradesh, India, employing the Revised Universal Soil Loss Equation (RUSLE) integrated with Geographic Information System (GIS) tools to estimate and spatially analyze soil erosion and fertility risk. The various factors of the model, like rainfall erosivity (R), soil erodibility (K), slope length and steepness (LS), conservation practices (P), and cover management factor (C), have been computed to measure annual soil loss in the district. Each factor was derived using geospatial datasets, including rainfall records, soil characteristics, a Digital Elevation Model (DEM), land use/land cover (LULC) data, and information on conservation practices. GIS methods are used to map the geographical variation of soil erosion, providing important information on the area’s most susceptible to erosion. The outcome of the study reveals that 3371.23 km2, which constitutes 91% of the district’s total area, is identified as having mild soil erosion; in contrast, 154 km2, or 4%, is classified as moderate soil erosion, while 92 km2, representing 2.5%, falls under the high soil erosion category. Ad
Industrial plastics have seen considerable progress recently, particularly in manufacturing non-lethal projectile holders for shock absorption. In this work, a variety of percentages of alumina (Al2O3) and carbon black (CB) were incorporated into high-density polyethylene (HDPE) to investigate the additive material effect on the consistency of HDPE projectile holders. The final product with the desired properties was controlled via physical, thermal, and mechanical analysis. Our research focuses on nanocomposites with a semicrystalline HDPE matrix strengthened among various nanocomposites. In the presence of compatibility, mixtures of variable compositions from 0 to 3% by weight were prepared. The reinforcement used was verified by X-ray diffraction (XRD) characterization, and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used for thermal property investigation. Alumina particles increased the composites’ thermal system and glass transition temperature. Mechanical experiments indicate that incorporating alumina into the matrix diminishes impact resistance while augmenting static rupture stress. Scanning electron microscopy (SEM) revealed a consistent load distribution. Ultimately, we will conduct a statistical analysis to compare the experimental outcomes and translate them into mathematical answers that elucidate the impact of filler materials on the HDPE matrix.
Land use changes have been demonstrated to exert a significant influence on urban planning and sustainable development, particularly in regions undergoing rapid urbanization. Tehran Province, as the political and economic capital of Iran, has undergone substantial growth in recent decades. The present study employs sophisticated Geographic Information System (GIS) instruments and the Google Earth Engine (GEE) platform to comprehensively track and analyze land use change over the past two decades. A comprehensive analysis of Landsat images of the Tehran metropolitan area from 2003 to 2023 has yielded significant insights into the patterns of land use change. The methodology encompasses the utilization of GIS, GEE, and TerrSet techniques for image classification, accuracy assessment, and change detection. The Kappa coefficients for the maps obtained for 2016 and 2023 were 0.82 and 0.87 for four classes: built-up, vegetation cover, barren land, and water bodies. The findings suggest that, over the past two decades, Tehran Province has undergone a substantial decline in ecological and vegetative areas, amounting to 2.4% (458.3 km2). Concurrently, the urban area and the barren lands have expanded by 287.5 and 125.5 km2, respectively. The increase in water bodies during this period is likely attributable to the reduction of vegetation cover and dam construction in the region. The present study demonstrates that remote sensing and GIS are excellent tools for monitoring environmental and sustainable urban development in areas experiencing rapid urbanization and land use changes.
Copyright © by EnPress Publisher. All rights reserved.