Aiming at the current problems of poor dynamic reconstruction of UAV aerial remote sensing images and low image clarity, the dynamic reconstruction method of UAV aerial remote sensing images based on compression perception is proposed. Construct a quality reduction model for UAV aerial remote sensing images, obtain image feature information, and further noise reduction preprocessing of UAV aerial remote sensing images to better improve the resolution, spectral and multi-temporal trends of UAV aerial remote sensing images, and effectively solve the problems of resource waste such as large amount of sampled data, long sampling time and large amount of data transmission and storage. Maximize the UAV aerial remote sensing images sampling rate, reduce the complexity of dynamic reconstruction of UAV aerial remote sensing images, and effectively obtain the research requirements of high-quality image reconstruction. The experimental results show that the proposed dynamic reconstruction method of UAV aerial remote sensing images based on compressed sensing is correct and effective, which is better than the current mainstream methods.
Background: Through the development of robust techniques and their comprehensive validation, cardiac magnetic resonance imaging (CMR) has developed a wide range of indications in its almost 25 years of clinical use. The recording of cardiac volumes and systolic ventricular function as well as the characterization of focal myocardial scars are now part of standard CMR imaging. Recently, the introduction of accelerated image acquisition technologies, the new imaging methods of myocardial T1 and T2 mapping and 4-D flow measurements, and the new post-processing technique of myocardial feature tracking have gained relevance. Method: This overview is based on a comprehensive literature search in the PubMed database on new CMR techniques and their clinical application. Results and conclusion: This article provides an overview of the latest technical developments in the field of CMR and their possible applications based on the most important clinical questions.
Copyright © by EnPress Publisher. All rights reserved.