The coconut industry has deep historical and economic importance in Sri Lanka, but coconut palms are vulnerable to water stress exacerbated by environmental challenges. This study explored using Sunn hemp (Crotalaria juncea L.) in major coconut-growing soils in Sri Lanka to improve resilience to water stress. The study was conducted at the Coconut Research Institute of Sri Lanka to evaluate the growth of Sunn hemp in prominent coconut soils—gravel, loamy, and sandy—to determine its cover crop potential. Sunn hemp was planted in pots with the three soil types, arranged in a randomized, complete design with 48 replicates. Growth parameters like plant height, shoot/root dry weight, root length, and leaf area were measured at 2, 4, 6, and 8 weeks after planting. Soil type significantly impacted all growth parameters. After 8 weeks, sandy soil showed the highest plant height and root length, while loamy soil showed the highest shoot/root dry weight and leaf area, followed by sandy and gravel soils. Nitrogen content at 6 and 8 weeks was highest in loamy soil plants. In summary, Sunn hemp produces more biomass in sandy soils, while loamy soils promote greater nutrient accumulation and growth. This suggests the suitability of Sunn hemp as a cover crop across major coconut-growing soils in Sri Lanka, improving resilience.
The cultivation of sugar beet (Beta vulgaris L.) for table or horticultural purposes is largely carried out in the conventional way which is characterized by intense mechanization causing soil degradation and high labor costs. New cultivation techniques are being employed in the production of vegetables aiming to ensure improvements in environmental and economic conditions, such as the no-till farming system. Thus, the objective of this work was to evaluate the vegetable classification and physicochemical characteristics of beets from different corn planting densities. The experiment was conducted in the period from October 2018 to June 2019 in the municipality of Nova Laranjeiras (PR). Corn was used as a cover plant and the vegetable used was beet cultivar Early Wonder Tall Top. The experimental design used was in interspersed blocks in unifactorial scheme (corn densities 40, 60, 80, 100 thousand plants/ha and control) with four blocks, with plots 3.60 m long and 1.20 m wide. The parameters evaluated 60 days after planting were: commercial classification (class, group, subgroup, category), length, diameter, mass, pulp firmness, soluble solids, titratable acidity, pH and ratio, phenolic compounds. Of which the variables that were not significant at 0.5 probability were length, category (defects), firmness, subgroup (flesh color), soluble solids and phenolic compounds. It is concluded that high densities of corn as mulch for SPDH of sugar beet crop negatively affect the grade and physicochemical characterization of the products.
Copyright © by EnPress Publisher. All rights reserved.