This study aims to investigate the enhancement in electrical efficiency of a polycrystalline photovoltaic (PV) module. The performance of a PV module primarily depends upon environmental factors like temperature, irradiance, etc. Mainly, the PV module performance depends upon the panel temperature. The performance of the PV module has an inverse relationship with temperature. The open circuit voltage of a module decreases with the increase in temperature, which consequently leads to the reduction in maximum power, efficiency, and fill factor. This study investigates the increase in the efficiency of the PV module by lowering the panel temperature with the help of water channel cooling and water-channel accompanied with forced convection. The two arrangements, namely, multi-inlet outlet and serpentine, are used to decrease the temperature of the polycrystalline PV module. Copper tubes in the form of the above arrangements are employed at the back surface of the panel. The results demonstrate that the combined technique is more efficient than the simple water-channel cooling technique owing to multi-heat dissipation and effective heat transfer, and it is concluded that the multi-inlet outlet cooling technique is more efficient than the serpentine cooling technique, which is attributed to uniform cooling over the surface and lesser pressure losses.
Phytochemical and antioxidant analysis of some varieties of Capsicum was evaluated. Mature Capsicum varieties were collected across the State. The seeds were removed, sun-dried for 3 days, stored for 2 weeks at 15 ºC–25 ºC in polythene bags before planting. Saponins, tannins, flavonoids, alkaloids and cardiac glycosides were present in abundant, moderate and trace amounts. Combined anthraquinones were absent in all varieties. Yellow (0.810 ± 0.0006 µg/mL), red long dry (0.211 ± 0.0006 µg/mL) and round peppers (2.527 ± 0.0003 µg/mL) had the largest values for total phenol, flavonoids and tannins. Shombo and yellow peppers had the largest (0.270 ± 0.002 µg/mL) and least (0.102 ± 0.001 µg/mL) capsaicin content. The antioxidant activities varied across the varieties. At 100 µg/mL of methanol, yellow (45%) and round peppers (45%) had largest mean absorbances for 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Activity while sub-shombo pepper (23%) had the least. For Ferric Reducing Antioxidant Power (FRAP), yellow (0.63 ± 0.001 µg/mL) and sub-shombo peppers (0.55 ± 0.001µg/mL) had the largest and least values at 100 µg/mL of methanol. At 100 µg/mL of methanol, red long dry (0.112 ± 0.001) and shombo peppers (0.101 ± 0.001) had the largest and least values for the nitric oxide scavenging activity. This study shows that Capsicum varieties exhibit bioactive componds similarities and variations with implications in hybridization, taxonomy and conservation.
This contribution questions young people’s access to digital networks at the scale of intermediate cities in Saint-Louis. Thus, it analyzes the prescriptions of digital actors responsible for the development of digital economy in relation with the orientations of the Senegal Digital 2025 strategy. This is a pretex to highlight the gaps between official political discourses and the level of deployment of digital infrastructures. The study highlights the need to repoliticize the needs of populations for broadband and very high-speed connections to promote local initiatives for youth participation in Saint-Louis. Indeed, datas relating to access and use of the Internet by young people reveal inequalities linked to household income, the disparity of infrastructure and digital equipment, and the discontinuity in neighborhood development, but also to the adaptability of the internet service marketed. Through urban and explanatory sociology mobilized through the approach of young people’s real access to the Internet, our analyzes have shown at the scale of urban neighborhoods the impact of the actions recommended by those involved in the development of populations’ access to Internet. The result is that the majority of young people are forced to access the Internet through medium-speed mobile networks.
Copyright © by EnPress Publisher. All rights reserved.