The transition to sustainable agricultural practices is critical in the face of escalating climate challenges. Despite significant advances, the integration of green technologies within agribusiness remains underexplored. This study undertakes a comprehensive bibliometric analysis, utilizing data from the Web of Science Core Collection (1990–2023), to elucidate the integration of green technologies within agribusiness strategies. The research highlights key trends, influential authors, prominent journals, and significant thematic clusters, including biogas, biochar, biotech remediation, sustainable agriculture transition, low-carbon agriculture, and green strategies. By employing R, Bibliometrix, and VOSviewer, the study provides a nuanced understanding of the research landscape, emphasizing the critical role of strategic planning, policy frameworks, technological innovation, and interdisciplinary approaches in promoting sustainable agricultural development. The findings underscore the growing scholarly interest in sustainable practices, driven by global initiatives such as the UN’s 2030 Agenda and the Paris Agreement. This study contributes to the literature by offering qualitative insights and policy implications, highlighting the necessity for a holistic integration of green technologies to enhance the environmental and economic viability of agribusinesses.
Smallholder cocoa producers often experience low productivity levels, partly due to their weak collaborative advantage (CA). CA enables businesses to optimize outcomes through effective collaboration within value chains. This paper aims at examining the effect of CA pillars (trust building, resource investment, and decision synchronization) on the productivity. This paper uses primary data of 406 samples from smallholder cocoa producers in Indonesia. The data is analyzed by using CDM (Crepon Duguet Mairesse) model that divides the CA process into three stages: effort, output, and productivity. In the first stage, our model shows that having motivation to collaborate positively affects collaborative effort expenditure to develop a CA. In the second stage, the study finds that the three pillars of CA have to some degree contributes to achieving a better access to finance, superior cocoa seeds, and cocoa processing technology for smallholder cocoa producers. In the third stage, acquiring the outputs of CA leads to productivity improvement. The findings underscore the significance of intangible factors in shaping robust Collaborative Advantage (CA) and influencing productivity. This enriches CA theory, which has traditionally focused primarily on tangible factors.
Beta macrocarpa, Guss is an interesting species showing very low germination rates. The leading objectives of this work were to investigate the dormancy mechanism and to find methods to break dormancy in order to achieve rapid, uniform and high germination. Macro and micro-morphologic analyses were performed by stereo microscopy and scanning electron microscopy showed two fruit coats. The yellow external coat or persistent perianth coat (PPC) was accrescent with 5 erect segments contiguous to the operculum of the seed capsule. This coat forms spongy layers (50 to 300 µm thick) that could be eliminated manually. The narrow internal coat or pericarp or achene coat (AC) forms woody joined seed capsules, each presenting a pressed operculum that cannot be manually opened. This coat was not adherent to seeds and was composed of compressed cells (50 to 200 µm thick) which form pockets for salt cristal. Seeds were lentiform (1 to 2 mm diameter and 0.5 to 0.8 mm thick) and highly fragile. The embryo was whitish surrounded peripherally by the perisperm with two highly developed cotyledons and radical. Polyphenol concentrations in both coats showed that after 4 months of collection, total polyphenol concentrations were 4-fold higher in the pericarp than in the persistent perianth. However, after one year, this parameter decreases significantly in the pericarp, whereas, it increases to a larger extent in the perianth. Different germination tests indicated that the pericarp provides a chemical and a physical resistance to seed germination during the first 4 months of the experiment after collection. The chemical dormancy was released to higher levels of total polyphenol compounds that inhibited seed germination and seedling growth. However, the physical dormancy was associated with the hardness of this intern coat which caused a mechanical resistance to radicle emergence. After one year of storage, total polyphenol pericarp concentration decreased notably, and chemical resistance disappeared, whereas the physical one persisted. Consequently, one year of storage pericarp removal is sufficient to break this exogenous dormancy.
With the purpose of identifying the characteristics of variation in fruit size and seed production (potential and efficiency) of Cedrela odorata L. between sites and progenies established in the ejido La Balsa, municipality of Emiliano Zapata, Veracruz, fruits were harvested from 20 trees in February 2013, preserving the identity of each one. Fruit length and width were measured, seed was extracted and developed and aborted seeds were counted to calculate Seed Production Potential (SPP) and Seed Efficiency (SE). The results showed significant differences between sites and between progenies and for fruit length between sites. The mean values found were: 32.52 mm (fruit length), 18.73 mm (fruit width), 39.9 seeds per fruit (SPP) and 57.51% (SE). The seed of this species for its use should be selected taking into account the production characteristics of crops and outstanding individual trees, in addition, due to the current regulatory restrictions on seed collection, the establishment of trials and plantations for germplasm production is a viable option for forest management of the species.
The use of bioproducts, economically viable, are of extreme importance in the protection and stimulation of germination in vegetable crops. This work evaluated the effect of the microorganisms Azospirillum brasiliense, Bacillus sub-tilis, Trichoderma harzianum and the commercial seed treatment product (Fipronil + Pilaclostrobin and Methyl Thiophanate) on seeds and seedlings of lettuce (Lactuca sativa), carrot (Daucus carota) and tomato (Solanum lycopersicum). The seeds were inoculated before being submitted to the germination test. The chemical treatment proved ineffective in protecting the seed of all crops and stimulating germination. T. harzianum increased the germination index of lettuce seeds, had better values in root system size in tomato crop and stimulated radicle emission in carrot. B. subtilis stood out in dry matter accumulation in tomato crop. The microorganisms B. subtilis and T. harzianum present potential for vegetable seed treatment.
A three-factor experiment was set at the Horticulture Laboratory, Hajee Mohammad Danesh Science and Technology University, Dinajpur, to study the effects of the controlled deterioration (CD) on the pea seeds at the constant temperature of 35 ℃. The 3 factors considered were: 3 pea seed sources (Rangpur Local/RL, Dinajpur Local/DL and Thakurgaon Local/TL); 3 ageing periods (0, 8 and 16 days); and 3 seed moisture contents (12, 16 and 20% MC). The 27 treatment combinations compared in the CRD with the 3 repetitions for the 8 arenas were: % germination, % abnormal seedlings, % dead seeds, % soil emergence and seedling evaluation test for the root and shoot lengths as well as their dry matter contents. Identical prototypes of notable (5–1% level) degradations were recorded everywhere. But the disparities were lucid under the extreme stresses. Moreover, highly noteworthy (1% level) relations were traced amid all the traits ranging from -0.9847 (soil emergence × abnormal seedling) to 0.9623 (soil emergence × normal seedling). So, the CD technique was very effectual in judging the physiological statuses of the seed sources studied. Thus, the germination test might be add-on by a vigor test, the latter of which could be assessed by quantifying the seedlings’ root and shoot lengths and/or their dry matter accumulations. Moreover, in the seed quality certification, the suitable limits of vigor for the chosen traits could also be got by this technique. But the seeds of several pea varieties should be exploited to fix-up the agreeable limits of the traits. Furthermore, to save time, the ageing period could be squeezed by raising the seed MC.
Copyright © by EnPress Publisher. All rights reserved.