The power of Artificial Intelligence (AI) combined with the surgeons’ expertise leads to breakthroughs in surgical care, bringing new hope to patients. Utilizing deep learning-based computer vision techniques in surgical procedures will enhance the healthcare industry. Laparoscopic surgery holds excellent potential for computer vision due to the abundance of real-time laparoscopic recordings captured by digital cameras containing significant unexplored information. Furthermore, with computing power resources becoming increasingly accessible and Machine Learning methods expanding across various industries, the potential for AI in healthcare is vast. There are several objectives of AI’s contribution to laparoscopic surgery; one is an image guidance system to identify anatomical structures in real-time. However, few studies are concerned with intraoperative anatomy recognition in laparoscopic surgery. This study provides a comprehensive review of the current state-of-the-art semantic segmentation techniques, which can guide surgeons during laparoscopic procedures by identifying specific anatomical structures for dissection or avoiding hazardous areas. This review aims to enhance research in AI for surgery to guide innovations towards more successful experiments that can be applied in real-world clinical settings. This AI contribution could revolutionize the field of laparoscopic surgery and improve patient outcomes.
Monitoring marine biodiversity is a challenge in some vulnerable and difficult-to-access habitats, such as underwater caves. Underwater caves are a great focus of biodiversity, concentrating a large number of species in their environment. However, most of the sessile species that live on the rocky walls are very vulnerable, and they are often threatened by different pressures. The use of these spaces as a destination for recreational divers can cause different impacts on the benthic habitat. In this work, we propose a methodology based on video recordings of cave walls and image analysis with deep learning algorithms to estimate the spatial density of structuring species in a study area. We propose a combination of automatic frame overlap detection, estimation of the actual extent of surface cover, and semantic segmentation of the main 10 species of corals and sponges to obtain species density maps. These maps can be the data source for monitoring biodiversity over time. In this paper, we analyzed the performance of three different semantic segmentation algorithms and backbones for this task and found that the Mask R-CNN model with the Xception101 backbone achieves the best accuracy, with an average segmentation accuracy of 82%.
Copyright © by EnPress Publisher. All rights reserved.