Soil erosion is characterized by the wearing away or loss of the uppermost layer of soil, driven by water, wind, and human activities. This process constitutes a significant environmental issue, with adverse effects on water quality, soil health, and the overall stability of ecosystems across the globe. This study focuses on the Anuppur district of Madhya Pradesh, India, employing the Revised Universal Soil Loss Equation (RUSLE) integrated with Geographic Information System (GIS) tools to estimate and spatially analyze soil erosion and fertility risk. The various factors of the model, like rainfall erosivity (R), soil erodibility (K), slope length and steepness (LS), conservation practices (P), and cover management factor (C), have been computed to measure annual soil loss in the district. Each factor was derived using geospatial datasets, including rainfall records, soil characteristics, a Digital Elevation Model (DEM), land use/land cover (LULC) data, and information on conservation practices. GIS methods are used to map the geographical variation of soil erosion, providing important information on the area’s most susceptible to erosion. The outcome of the study reveals that 3371.23 km2, which constitutes 91% of the district’s total area, is identified as having mild soil erosion; in contrast, 154 km2, or 4%, is classified as moderate soil erosion, while 92 km2, representing 2.5%, falls under the high soil erosion category. Ad
The exploitation of timber has had a profound impact on tropical forest areas and their structures. This study assessed the effect of selective logging on natural regeneration and soil characteristics in post-loading bay sites at the Pra-Anum forest reserve in Ghana, West Africa. The results showed no difference in the number of species enumerated in the loading bays and the undisturbed area. More trees were observed in the RAT and RNT plots than in the undisturbed area. Relative to the RAT plot, species on the RNT and the undisturbed area were less diverse and less evenly distributed. Mean tree height, diameter, and basal area were higher in the RAT and RNT plots than in the undisturbed plots. Soil bulk density was lower in the RAT and undisturbed plot than in the RAT plot and increased with increased depth. Soil organic matter was 44% and 27% more in the undisturbed and RAT plots, respectively, than in the RNT plot and accounted for 84.75%, 83.97% and 45.33% of variations in soil bulk density, pH, and CEC. The study provides insight into the need to rehabilitate highly disturbed areas in forests, particularly the addition of topsoil on loading bays, skid trails, roads, and gaps after logging to improve the productivity of the forest soils.
Soil salinization is a difficult challenge for agricultural productivity and environmental sustainability, particularly in arid and semi-arid coastal regions. This study investigates the spatial variability of soil electrical conductivity (EC) and its relationship with key cations and anions (Na+, K+, Ca2+, Mg2+, Cl⁻, CO32⁻, HCO3⁻, SO42⁻) along the southeastern coast of the Caspian Sea in Iran. Using a combination of field-based soil sampling, laboratory analyses, and Landsat 8 spectral data, linear Multiple Linear Regression and Partial Least Squares Regression (MLR, PLSR) and nonlinear Artifician Neural Network and Support Vector Machine (ANN, SVM) modeling approaches were employed to estimate and map soil EC. Results identified Na+ and Cl⁻ as the primary contributors to salinity (r = 0.78 and r = 0.88, respectively), with NaCl salts dominating the region’s soil salinity dynamics. Secondary contributions from Potassium Chloride KCl and Magnesium Chloride MgCl2 were also observed. Coastal landforms such as lagoon relicts and coastal plains exhibited the highest salinity levels, attributed to geomorphic processes and anthropogenic activities. Among the predictive models, the SVM algorithm outperformed others, achieving higher R2 values and lower RMSE (RMSETest = 27.35 and RMSETrain = 24.62, respectively), underscoring its effectiveness in capturing complex soil-environment interactions. This study highlights the utility of digital soil mapping (DSM) for assessing soil salinity and provides actionable insights for sustainable land management, particularly in mitigating salinity and enhancing agricultural practices in vulnerable coastal systems.
Water scarcity, particularly in arid and semi-arid regions, is a critical issue affecting forest management. This study investigates the effects of drought stress on the water requirement and morphological characteristics of two important tree species Turkish pine and Chinaberry. Using a factorial design, the study examines the impact of three age stages (one-year-old, three-year-old, and five-year-old plants) and three levels of drought stress on these species. Microlysimeters of varying sizes were employed to simulate different drought conditions. Soil moisture was monitored to show the effect of the various irrigation schedules. The study also calculated reference crop evapotranspiration (ET0) using the PMF-56 method and developed plant coefficients (Kc) for the species. Results showed that evapotranspiration increased with soil moisture, peaking during summer and decreasing in winter. Turkish pine exhibited higher plant ET than Chinaberry, particularly among one-year-old seedlings. Drought stress significantly reduced evapotranspiration and water uses for both species, highlighting the importance of efficient water management in afforestation projects. The findings underscore the necessity of selecting drought-resistant species and optimizing irrigation practices to enhance the sustainability of green spaces in arid regions. These insights are crucial for improving urban forestry management and mitigating the impacts of water scarcity in Iran and similar climates globally.
A Detailed geophysical investigation was conducted on Knossos territory of Crete Island. Main scope was the detection of underground archaeological settlements. Geophysical prospecting applied by an experienced geophysical team. According to area dimensions in relation to geological and structural conditions, the team designed specific geophysical techniques, by adopted non-catastrophic methods. Three different types of geophysical techniques performed gradually. Geophysical investigation consisted of the application of geoelectric mapping and geomagnetic prospecting. Electric mapping focusses on recording soil resistance distribution. Geomagnetic survey was performed by using two different types of magnetometers. Firstly, recorded distribution of geomagnetic intensity and secondly alteration of vertical gradient. Measured stations laid along the south-north axis with intervals equal to one meter. Both magnetometers were adjusted on a quiet magnetic station. Values were stored in files readable by geophysical interpretation software in XYZ format. Oasis Montaj was adopted for interpretation of measured physical properties distribution. Interpretation results were illustrated as color scale maps. Further processing applied on magnetic measurements. Results are confirmed by overlaying results from three different techniques. Geoelectric mapping contributed to detection of a few archaeological targets. Most of them were recorded by geomagnetic technique. Total intensity aimed to report the existence of magnetized bodies. Vertical gradient detected subsurface targets with clearly geometrical characteristics.
This study investigates the impact of extreme rainfall events on soil erosion in the downstream Parnaíba River Basin, located in the Brazilian Cerrado. The analysis focused on rainfall erosivity (R factor) and soil erodibility (K factor) as key indicators. The average erosivity in the region was 9051 MJ mm h−1ha−1year−1, with a variation between 7943 and 10,081 MJ mm h−1ha−1year−1, suggesting a high erosive potential, mainly in the rainiest months, from December to April. The soils of the studied area, mainly Ultisols and Chernosols, present high to very high erodibility, with K factor values ranging from 0.025 to 0.050 t h MJ−1 mm−1. Furthermore, fieldwork revealed areas, near highways, with apparently fragile soils, as well as rills and gullies, identified through photographs taken during fieldwork. These locations, due to the combination of high erosivity and susceptible soils, were considered prone to the occurrence of erosion processes, representing an additional risk to local infrastructure. The spatialization of R and K factors, along with field observations, showed that much of the area is at high risk of erosion and landslides, particularly in regions with greater topographic variability and proximity to water bodies. These results provide a basis for the development of mitigation strategies, being important for the effective prevention of landslides.
Copyright © by EnPress Publisher. All rights reserved.