In order to assess the effects of e-learning integration on university performance and competitiveness, this study uses Oman as a model for the Gulf. Analyzing how e-learning impacts technology integration, diversity, community engagement, infrastructure, financial strength, institutional reputation, student outcomes, research and innovation, and academic quality can reveal whether universities are effectively incorporating digital tools to enhance teaching and learning. By offering a framework for comparable institutions in the Gulf area, this study provides insights into optimizing e-learning techniques to improve university performance and competitiveness. This study uses the Structural Equation Modeling (SEM) with a dataset comprising 424 participants and 55 indicators, analyzed using both measurement and structural models. The results of the hypothesis testing, which indicate that e-learning has a positive effect on factors like student outcomes (B = 0.080, t = 2.859, P = 0.004) and institutional reputation (B = 0.058, t = 2.770, P = 0.005), lend credence to these beliefs. Omani universities need culturally sensitive e-learning, stronger institutional support, and training to enhance diversity (B = 0.002, t = 0.456, P = 0.647) and technology integration (B = −0.009, t = 0.864, P = 0.387). These improvements increase the visibility of Gulf institutions abroad, attracting the best students from all around the world and fostering an inclusive learning atmosphere. Financially speaking, e-learning offers reasonably priced solutions such as digital libraries and virtual laboratories, which are especially beneficial in a region where education plays a major role in socioeconomic development.
This paper investigates the transformative role of Artificial Intelligence (AI) in enhancing infrastructure governance and economic outcomes. Through a bibliometric analysis spanning more than two decades of research from 2000 to 2024, the study examines global trends in AI applications within infrastructure projects. The analysis reveals significant research themes across diverse sectors, including urban development, healthcare, and environmental management, highlighting the broad relevance of AI technologies. In urban development, the integration of AI and Internet of Things (IoT) technologies is advancing smart city initiatives by improving infrastructure systems through enhanced data-driven decision-making. In healthcare, AI is revolutionizing patient care, improving diagnostic accuracy, and optimizing treatment strategies. Environmental management is benefiting from AI’s potential to monitor and conserve natural resources, contributing to sustainability and crisis management efforts. The study also explores the synergy between AI and blockchain technology, emphasizing its role in ensuring data security, transparency, and efficiency in various applications. The findings underscore the importance of a multidisciplinary approach in AI research and implementation, advocating for ethical considerations and strong governance frameworks to harness AI’s full potential responsibly.
Technical Pedagogical Content Knowledge (TPACK) encompasses teachers’ understanding of the intricate interplay among technology, pedagogy, and subject matter expertise, serving as the essential knowledge base for integrating technology into subject-specific instruction. Over the decade, advancements in information technology have led to the consistent application of the TPACK framework within studies on instructional technology and technology-enhanced learning, significantly advancing the evolution of contemporary teacher education in technology integration. In this paper, we utilize the Teaching and Learning Knowledge of Subjects Based on Integrated Technology (TPACK) framework to administer a questionnaire survey to teacher trainees at Chinese colleges and universities. This survey aims to evaluate the current status of their integrated technology-based subject teaching and learning knowledge. Based on the research findings, we propose strategies aimed at enhancing the educational technology integration knowledge of students pursuing integrated technology courses in colleges and universities. Furthermore, we integrate the smart classroom setting to develop a comprehensive TPACK-integrated model teaching framework. Our final objective is to offer valuable references for the progress of modern teaching skills among education students in higher education institutions.
This study aimed to examine the impact of digital leadership among school principals and evaluate the mediating effect of Professional Learning Communities (PLCs) on enhancing teachers’ innovation skills for sustainable technology integration, both in traditional classroom settings and e-learning environments. Employing a quantitative approach with a regression design model, Structural Equation Modelling (SEM) and Partial Least Squares (PLS-SEM) were utilized in this research. A total of 257 teachers from 7 excellent senior high schools in Makassar city participated in the study, responding to the questionnaires administered. The study findings indicate that while principal digital leadership does not directly influence teachers’ innovation skills in technology integration, it directly impacts Professional Learning Communities (PLCs). Moreover, PLCs themselves have a significant influence on teachers’ innovation skills in technology integration. The structural model presented in this study illustrates a noteworthy impact of principal digital leadership on teachers’ innovation skills for technology integration through Professional Learning Communities (PLCs), with a coefficient value of 47.4%. Principal digital leadership is crucial in enhancing teachers’ innovation skills for sustainable technology integration, primarily by leveraging Professional Learning Communities (PLCs). As a result, principals must prioritize the creation of supportive learning environments and implement programs to foster teachers’ proficiency for sustainable technology integration. Additionally, teachers are encouraged to concentrate on communication, collaboration, and relationship-building with colleagues to exchange insights, address challenges, and devise solutions for integrating technology, thereby contributing to sustained school improvement efforts. Finally, this research provides insights for school leaders, policymakers, and educators, emphasizing the need to leverage PLCs to enhance teaching practices and student outcomes, particularly in sustainable technology integration.
Tangerang City is characterized by its dense residential, commercial, and industrial activities and strategic proximity to Jakarta. This study aims to evaluate the strategic planning and implementation of innovative city initiatives in Tangerang, Indonesia, focusing on integrating blockchain, Internet of Things (IoT) big data technologies and innovation in urban development. This study has employed explanatory survey data from a structured questionnaire distributed to a diverse Tangerang community sample, including users and non-users of the “Smart City Tangerang Live” application. The survey was conducted for 2-months March to April 2022, included 71 and the sample included individuals across 13 districts, utilizing cluster sampling to ensure representativeness. The findings reveal a positive community response towards the smart city initiatives, with significant Engagement and interaction with the “Tangerang Live” application. However, technology access and usage disparities among different community segments were noted. The study highlights the critical role of intelligent technologies in transforming urban infrastructure and services, improving the quality of life, and fostering sustainable urban development in Tangerang. The implications of this study are multifaceted. For urban planners and policymakers, the results underscore the importance of strategic planning in innovative city development, emphasizing the need for inclusive and accessible technological solutions. The study also suggests potential areas for improvement in community engagement and public awareness campaigns to promote the adoption and efficient use of smart technologies.
This research looks into the differences in technological practices across Gen-X, Gen-Y, and Gen-Z employees in the workplace, with an emphasis on motivation, communication, collaboration, and productivity gaps. The study uses a systematic literature review to identify factors that contribute to these variations, taking into account each generation’s distinct experiences, communication methods, working attitudes, and cultural backgrounds. Bridging generational gaps, providing ongoing training, and incorporating cross-generational and technology-enhanced practices are all required in today’s workplace. This study compares the dominating workplace generations, Gen-X and Gen-Y, with the emerging Gen-Z. A review of the literature from 2010 to 2023, which was narrowed down from 1307 to 20 significant studies, emphasizes the importance of organizational management adapting to generational changes in order to increase productivity and maintain a healthy workplace. The study emphasizes the need of creating effective solutions for handling generational variations in workplace.
Copyright © by EnPress Publisher. All rights reserved.