Unmanned Aerial Vehicles (UAVs) have gained spotlighted attention in the recent past and has experienced exponential advancements. This research focuses on UAV-based data acquisition and processing to generate highly accurate outputs pertaining to orthomosaic imagery, elevation, surface and terrain models. The study addresses the challenges inherent in the generation and analysis of orthomosaic images, particularly the critical need for correction and enhancement to ensure precise application in fields like detailed mapping and continuous monitoring. To achieve superior image quality and precision, the study applies advanced image processing techniques encompassing Fuzzy Logic and edge-detection techniques. The study emphasizes on the necessity of an approach for countering the loss of information while mapping the UAV deliverables. By offering insights into both the challenges and solutions related to orthomosaic image processing, this research lays the groundwork for future applications that promise to further increase the efficiency and effectiveness of UAV-based methods in geomatics, as well as in broader fields such as engineering and environmental management.
UAVs, also known as unmanned aerial vehicles, have emerged as an efficient and flexible system for offering a rapid and cost-effective solution. In recent years, large-scale mapping using UAV photogrammetry has gained significant popularity and has been widely adopted in academia as well as the private sector. This study aims to investigate the technical aspects of this field, provide insights into the procedural steps involved, and present a case study conducted in Cesme, Izmir. The findings derived from the case study are thoroughly discussed, and the potential applications of UAV photogrammetry in large-scale mapping are examined. The study area is divided into 12 blocks. The flight plans and the distribution of ground control point (GCP) locations were determined based on these blocks. As a result of the data processing procedure, average GCP positional errors ranging from 1 to 18 cm have been obtained for the blocks.
Aiming at the current problems of poor dynamic reconstruction of UAV aerial remote sensing images and low image clarity, the dynamic reconstruction method of UAV aerial remote sensing images based on compression perception is proposed. Construct a quality reduction model for UAV aerial remote sensing images, obtain image feature information, and further noise reduction preprocessing of UAV aerial remote sensing images to better improve the resolution, spectral and multi-temporal trends of UAV aerial remote sensing images, and effectively solve the problems of resource waste such as large amount of sampled data, long sampling time and large amount of data transmission and storage. Maximize the UAV aerial remote sensing images sampling rate, reduce the complexity of dynamic reconstruction of UAV aerial remote sensing images, and effectively obtain the research requirements of high-quality image reconstruction. The experimental results show that the proposed dynamic reconstruction method of UAV aerial remote sensing images based on compressed sensing is correct and effective, which is better than the current mainstream methods.
The micro staring hyperspectral imager can simultaneously acquire two spatial and one spectral images, and only record the external orientation elements of the entire hyperspectral image rather than the external orientation elements of each frame of the image, which avoids the geometric instability during scanning, effectively solves the problem of large geometric deformation of the small line scanning hyperspectral imager, and is suitable for the small UAV load platform with unstable attitude. At present, most of the research focuses on the radio-metric correction method of line scan hyperspectral imager. The application time of staring hyperspectral imager is short, and there is no mature data processing re-search at home and abroad, which hinders the application of UAV micro staring hyperspectral imaging system. In this paper, the calibration method of the linearity and variability of the radiation response of the micro staring hyperspectral imager on the UAV is studied, and the effectiveness of this method is quantitatively evaluated. The results show that the hyperspectral image has obvious vignetting effect and strip phenomenon before the correction of radiation response variability. After the correction, the radiation response variation coefficient of pixels in different bands decreases significantly, and the vignetting effect and image strip decrease significantly. In this paper, a multi-target radiometric calibration method is proposed, and the accuracy of radiometric calibration is verified by comparing the calibrated hyperspectral image spectrum with the measured ground object spectrum of the ground spectrometer. The results show that the calibration results of the multi-target radiometric calibration method show better results, especially for the near-infrared band, and the difference with the surface reflectance measured by the spectrometer is small.
Copyright © by EnPress Publisher. All rights reserved.