This study comprehensively evaluates the system performance by considering the thermodynamic and exergy analysis of hydrogen production by the water electrolysis method. Energy inputs, hydrogen and oxygen production capacities, exergy balance, and losses of the electrolyzer system were examined in detail. In the study, most of the energy losses are due to heat losses and electrochemical conversion processes. It has also been observed that increased electrical input increases the production of hydrogen and oxygen, but after a certain point, the rate of efficiency increase slows down. According to the exergy analysis, it was determined that the largest energy input of the system was electricity, hydrogen stood out as the main product, and oxygen and exergy losses were important factors affecting the system performance. The results, in line with other studies in the literature, show that the integration of advanced materials, low-resistance electrodes, heat recovery systems, and renewable energy is critical to increasing the efficiency of electrolyzer systems and minimizing energy losses. The modeling results reveal that machine learning programs have significant potential to achieve high accuracy in electrolysis performance estimation and process view. This study aims to contribute to the production of growth generation technologies and will shed light on global and technological regional decision-making for sustainable energy policies as it expands.
To study the environment of the Kipushi mining locality (LMK), the evolution of its landscape was observed using Landsat images from 2000 to 2020. The evolution of the landscape was generally modified by the unplanned expansion of human settlements, agricultural areas, associated with the increase in firewood collection, carbonization, and exploitation of quarry materials. The problem is that this area has never benefited from change detection studies and the LMK area is very heterogeneous. The objective of the study is to evaluate the performance of classification algorithms and apply change detection to highlight the degradation of the LMK. The first approach concerned the classifications based on the stacking of the analyzed Landsat image bands of 2000 and 2020. And the second method performed the classifications on neo-images derived from concatenations of the spectral indices: Normalized Difference Vegetation Index (NDVI), Normalized Difference Building Index (NDBI) and Normalized Difference Water Index (NDWI). In both cases, the study comparatively examined the performance of five variants of classification algorithms, namely, Maximum Likelihood (ML), Minimum Distance (MD), Neural Network (NN), Parallelepiped (Para) and Spectral Angle Mapper (SAM). The results of the controlled classifications on the stacking of Landsat image bands from 2000 and 2020 were less consistent than those obtained with the index concatenation approach. The Para and DM classification algorithms were less efficient. With their respective Kappa scores ranging from 0.27 (2000 image) to 0.43 (2020 image) for Para and from 0.64 (2000 image) to 0.84 (2020 image) for DM. The results of the SAM classifier were satisfactory for the Kappa score of 0.83 (2000) and 0.88 (2020). The ML and NN were more suitable for the study area. Their respective Kappa scores ranged between 0.91 (image 2000) and 0.99 (image 2020) for the LM algorithm and between 0.95 (image 2000) and 0.96 (image 2020) for the NN algorithm.
The Agriculture Trading Platform (ATP) represents a significant innovation in the realm of agricultural trade in Malaysia. This web-based platform is designed to address the prevalent inefficiencies and lack of transparency in the current agricultural trading environment. By centralizing real-time data on agricultural production, consumption, and pricing, ATP provides a comprehensive dashboard that facilitates data-driven decision-making for all stakeholders in the agricultural supply chain. The platform employs advanced deep learning algorithms, including Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNN), to forecast market trends and consumption patterns. These predictive capabilities enable producers to optimize their market strategies, negotiate better prices, and access broader markets, thereby enhancing the overall efficiency and transparency of agricultural trading in Malaysia. The ATP’s user-friendly interface and robust analytical tools have the potential to revolutionize the agricultural sector by empowering farmers, reducing reliance on intermediaries, and fostering a more equitable trading environment.
The usage of cybersecurity is growing steadily because it is beneficial to us. When people use cybersecurity, they can easily protect their valuable data. Today, everyone is connected through the internet. It’s much easier for a thief to connect important data through cyber-attacks. Everyone needs cybersecurity to protect their precious personal data and sustainable infrastructure development in data science. However, systems protecting our data using the existing cybersecurity systems is difficult. There are different types of cybersecurity threats. It can be phishing, malware, ransomware, and so on. To prevent these attacks, people need advanced cybersecurity systems. Many software helps to prevent cyber-attacks. However, these are not able to early detect suspicious internet threat exchanges. This research used machine learning models in cybersecurity to enhance threat detection. Reducing cyberattacks internet and enhancing data protection; this system makes it possible to browse anywhere through the internet securely. The Kaggle dataset was collected to build technology to detect untrustworthy online threat exchanges early. To obtain better results and accuracy, a few pre-processing approaches were applied. Feature engineering is applied to the dataset to improve the quality of data. Ultimately, the random forest, gradient boosting, XGBoost, and Light GBM were used to achieve our goal. Random forest obtained 96% accuracy, which is the best and helpful to get a good outcome for the social development in the cybersecurity system.
This study evaluated the performance of several machine learning classifiers—Decision Tree, Random Forest, Logistic Regression, Gradient Boosting, SVM, KNN, and Naive Bayes—for adaptability classification in online and onsite learning environments. Decision Tree and Random Forest models achieved the highest accuracy of 0.833, with balanced precision, recall, and F1-scores, indicating strong, overall performance. In contrast, Naive Bayes, while having the lowest accuracy (0.625), exhibited high recall, making it potentially useful for identifying adaptable students despite lower precision. SHAP (SHapley Additive exPlanations) analysis further identified the most influential features on adaptability classification. IT Resources at the University emerged as the primary factor affecting adaptability, followed by Digital Tools Exposure and Class Scheduling Flexibility. Additionally, Psychological Readiness for Change and Technical Support Availability were impactful, underscoring their importance in engaging students in online learning. These findings illustrate the significance of IT infrastructure and flexible scheduling in fostering adaptability, with implications for enhancing online learning experiences.
Copyright © by EnPress Publisher. All rights reserved.