Climate change is an important factor that must be considered by designers of large infrastructure projects, with its effects anticipated throughout the infrastructure’s useful life. This paper discusses how engineers can address climate change adaptation in design holistically and sustainably. It offers a framework for adaptation in engineering design, focusing on risk evaluation over the entire life cycle. This approach avoids the extremes of inaction and designing for worst-case impacts that may not occur for several decades. The research reviews case studies and best practices from different parts of the world to demonstrate effective design solutions and adjustment measures that contribute to the sustainability and performance of infrastructure. The study highlights the need for interdisciplinary cooperation, sophisticated modeling approaches, and policy interventions for developing robust infrastructure systems.
The purpose of this study is to analyze issues related to the use of green technology and to provide a theoretical basis for how the application of green technology in agriculture can reduce inequality. Additionally, the study aims to explore policy alternatives based on the analysis of inequality reduction issues through farmer surveys. For this purpose, this study used survey data to analyze farmers’ perceptions, acceptance status, willingness to accept green technology, and perceptions of inequality. The quantitative analysis was performed to analyze the relationship between the acceptance of green technology and perceptions of inequality. The results confirmed that access to information, perception of climate change, and awareness of the need to reduce greenhouse gas emissions are major factors. In particular, the higher the satisfaction with policies regarding the introduction of green technology, the lower the perception of inequality. Specifically, the acceptance of green technology showed a significant positive correlation with access to information, perception of climate change, and awareness of the need to reduce greenhouse gas emissions, while perceptions of inequality showed a significant negative correlation with policy satisfaction. In conclusion, green technology in agriculture is vital for reducing climate change damage and inequality. However, targeted policy support for small-scale farmers is essential for successful adoption. This study provides policy implications related to the application of green technology in the agricultural sector, which can promote sustainable agricultural development.
This study conducts a comprehensive analysis of the aquaculture industry across 11 coastal regions in eastern China from 2017 to 2021 to assess their adaptability and resilience in the face of climate change. Cluster analysis was employed to examine regional variations in aquaculture adaptation by analyzing data on annual average temperatures, annual extreme high/low temperatures, annual average relative humidity, annual sunshine duration, and total yearly precipitation alongside various aquaculture practices. The findings reveal that southern regions, such as Fujian and Guangdong, demonstrate higher adaptability and resilience due to their stable subtropical climates and advanced aquaculture technologies. In contrast, northern regions like Liaoning and Shandong, characterized by more significant climatic fluctuations, exhibit varying degrees of cluster changes, indicating a continuous need to adjust aquaculture strategies to cope with climatic challenges. Additionally, the study explores the specific impacts of climate change on species selection, disease management, and water resource utilization in aquaculture, emphasizing the importance of developing region-specific strategies. Based on these insights, several strategic recommendations are proposed, including promoting species diversification, enhancing disease monitoring and control, improving water quality management techniques, and urging governmental support for policies and technical guidance to enhance the climate resilience and sustainability of the aquaculture sector. These strategies and recommendations aim to assist the aquaculture industry in addressing future climate challenges and fostering long-term sustainable development.
The article is devoted to the issues of political and legal regulation of climate adaptation in the regions of the Russian Federation. Against the background of the adopted federal national adaptation plan, regions are tasked with identifying key areas of activity taking into account natural-climatic, demographic, environmental and technological specifics. The authors focus on the similarities and differences of the presented adaptation plans, emphasizing that work to improve this system continues within the framework of Russia’s international obligations. The Arctic regions deserve special attention, as they also differ from each other both in the selected climate adaptation activities (from ecology to energy saving) and in their number. This review provides a clear picture of how the federal ecological system can develop.
This study scrutinizes the allocation of financial aid for climate change adaptation from OECD/DAC donors, focusing on its effectiveness in supporting developing countries. With growing concerns over climate risks, the emphasis on green development as a means of adaptation is increasing. The research explores whether climate adaptation finance is efficiently allocated and what factors influence OECD/DAC donor decisions. It examines bilateral official development assistance in the climate sector from 2010 to 2021, incorporating climate vulnerability and adaptation indices from the ND-GAIN Country Index and the IMF Climate Risk Index. A panel double hurdle model is used to analyze the factors influencing the financial allocations of 41,400 samples across 115 recipient countries from 30 donors, distinguishing between the decision to select a country and the determination of the aid amount. The study unveils four critical findings. Firstly, donors weigh a more comprehensive range of factors when deciding on aid amounts than when selecting recipient countries. Secondly, climate vulnerability is significantly relevant in the allocation stage, but climate aid distribution does not consistently match countries with high vulnerability. Thirdly, discerning the impact of socio-economic vulnerabilities on resource allocation, apart from climate vulnerability, is challenging. Lastly, donor countries’ economic and diplomatic interests play a significant role in climate development cooperation. As a policy implication, OECD/DAC donor countries should consider establishing differentiated allocation mechanisms in climate-oriented development cooperation to achieve the objectives of climate-resilient development.
The effects of climate change are already being felt, including the failure to harvest several agricultural products. On the other hand, peatland requires good management because it is a high carbon store and is vulnerable as a contributor to high emissions if it catches fire. This study aims to determine the potential for livelihood options through land management with an agroforestry pattern in peatlands. The methods used are field observation and in-depth interviews. The research location is in Kuburaya Regency, West Kalimantan, Indonesia. Several land use scenarios are presented using additional secondary data. The results show that agroforestry provides more livelihood options than monoculture farming or wood. The economic contribution is very important so that people reduce slash-and-burn activities that can increase carbon emissions and threaten the sustainability of peatland.
Copyright © by EnPress Publisher. All rights reserved.