The banking sector is a pillar of the world’s economic fabric and is today facing a major revolution due to the demands of sustainable development objectives and the evolution of sustainable finance tools. This article analyses the impact of green credit on commercial banks’ performance based on data from 10 commercial banks in China between 2012 and 2022. The study found that in the short term, the implementation of green credit has a positive effect on the income level of commercial banks’ intermediate activities and a moderating effect on their return on total assets and non-performing loan ratio.
This research explores the role of digital economy in driving agricultural development in the BIMSTEC region, which includes Thailand, Myanmar, Sri Lanka, Nepal, India, Bangladesh and Bhutan (with Bhutan excluded due to data limitations) with a particular focus on mobile technologies, computing capacity and internet connectivity which were the most readily available data points for BIMSTEC. Using a combination of document analysis, and panel data analysis with the data covering 10 years (2012–2021), the study examines the interplay of key digital technologies with agricultural growth while controlling for factors including water usage, fertilizer consumption, and land temperature and agricultural land area. The analysis incorporates additional variables such as infrastructure development, credit to agriculture, investment in agricultural research, and education level. The findings reveal a strong positive correlation between mobile technology, Internet and computing capacity in BIMSTEC. This study underscores that digital tools are pivotal in enhancing agricultural productivity, yet their impact is significantly combined with investment in infrastructure and education. This study suggests that digital solutions, when strategically integrated with broader socio-economic factors can effectively challenges in developing countries, particularly in rural and underserved regions. This research contributes to the growing body of literature on digital economy in agriculture, highlighting how digital technologies can foster agricultural productivity in developing countries.
The distress of commercial companies is considered one of the most critical stages leading to the liquidation and termination of the business. This danger increases in the context of poor management, stagnation, and the occurrence of crises and external circumstances that affect the company’s ability to cope. Rules regarding financial restructuring of distressed commercial companies may be regarded as the most prominent legal framework adopted by Emirati, Kuwaiti and French legislators to address the instability and distress of commercial enterprises and to provide solutions to mitigate the risk of bankruptcy and liquidation. It is a preventive measure aimed at reaching an agreement between the debtor and creditors to resolve the disturbances or difficulties faced by the company, which may affect its obligations to others. Therefore, financial restructuring is considered a mean of prevention and rescue for commercial companies, and the success of this rescue is linked to the debtor’s cooperation and seriousness in overcoming such issue.
Credit risk assessment is one of the most important aspects of financial decision-making processes. This study presents a systematic review of the literature on the application of Artificial Intelligence (AI) and Machine Learning (ML) techniques in credit risk assessment, offering insights into methodologies, outcomes, and prevalent analysis techniques. Covering studies from diverse regions and countries, the review focuses on AI/ML-based credit risk assessment from consumer and corporate perspectives. Employing the PRISMA framework, Antecedents, Decisions, and Outcomes (ADO) framework and stringent inclusion criteria, the review analyses geographic focus, methodologies, results, and analytical techniques. It examines a wide array of datasets and approaches, from traditional statistical methods to advanced AI/ML and deep learning techniques, emphasizing their impact on improving lending practices and ensuring fairness for borrowers. The discussion section critically evaluates the contributions and limitations of existing research papers, providing novel insights and comprehensive coverage. This review highlights the international scope of research in this field, with contributions from various countries providing diverse perspectives. This systematic review enhances understanding of the evolving landscape of credit risk assessment and offers valuable insights into the application, challenges, and opportunities of AI and ML in this critical financial domain. By comparing findings with existing survey papers, this review identifies novel insights and contributions, making it a valuable resource for researchers, practitioners, and policymakers in the financial industry.
This paper investigates the factors influencing credit growth in Kosovo, focusing on the relationship between credit activity and key economic variables, including GDP, FDI, CPI, and interest rates. Its analysis targets loans issued to businesses and households in Kosovo, employing a VAR model integrated into a VEC model to investigate the determinants of credit growth. The findings were validated using OLS regression. Additionally, the study includes a normality test, a model stability test (Inverse Roots AR Characteristic Polynomial), a Granger causality test for short-term relationships, and variance decomposition to analyze variable shocks over time. This research demonstrates that loan growth is primarily driven by its historical values. The VEC model shows that, in the long run, economic growth in Kosovo leads to less credit growth, showing a negative link between it and GDP. Higher interest rates also reduce credit growth, showing another negative link. On the other hand, more foreign direct investment (FDI) increases credit demand, showing a positive link between credit growth and FDI. The results show that loans and inflation (CPI) are positively linked, meaning higher inflation leads to more credit growth. Similarly, more foreign direct investment (FDI) increases credit demand, showing a positive link between FDI and credit growth. In the long term, higher inflation is connected to greater credit growth. In the short term, the VAR model suggests that GDP has a small to moderate effect on loans, while FDI has a slightly negative effect. In the VAR model, interest rates have a mixed effect: one coefficient is positive and the other negative, showing a delayed negative impact on loan growth. CPI has a small and negative effect, indicating little short-term influence on credit growth. The OLS regression supports the VAR results, finding no effect of GDP on loans, a small negative effect from FDI, a strong negative effect from interest rates, and no effect from CPI. This study provides a detailed analysis and adds to the research by showing how macroeconomic factors affect credit growth in Kosovo. The findings offer useful insights for policymakers and researchers about the relationship between these factors and credit activity.
Ticket revenues are crucial for the financial success of sports teams. To maximize these revenues, teams continuously explore effective ticket promotional strategies. One such strategy includes partial season plans, which mirror bundle offers common across various industries. Another widespread promotional strategy across industries is offering discounted credit (i.e., store credit purchased at a lower price than its face value). However, its application in sports (e.g., providing a $500 credit for tickets at $450) remains limited. Therefore, this study explores critical questions such as: “How effective is offering discounted credit compared to partial season plans?” and “What factors influence ticket promotion preferences?” Consequently, the study employed a 2 × 2 × 2 experimental designs, considering three independent variables: promotion type (discounted credit vs. partial season plans), promotion flexibility (predefined vs. customizable), and the consumer’s distance to the venue (near vs. distant). Results indicated that partial season plans generated significantly higher perceived value and purchase intentions while presenting lower perceived risks than discounted credit . Promotion flexibility did not significantly influence the three dependent variables , but the distance to the venue did . Both practical and theoretical implications of these findings are discussed.
Copyright © by EnPress Publisher. All rights reserved.