Cysteine is one of the body’s essential amino acids to build proteins. For the early diagnosis of a number of diseases and biological issues, L-cysteine (L-Cys) is essential. Our study presents an electrochemical sensor that detects L-cysteine by immobilizing the horseradish peroxidase (HRP) enzyme on a reduced graphene oxide (GCE) modified glassy carbon electrode. The morphologies and chemical compositions of synthesized materials were examined using Fourier transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FESEM). The modified electrode’s electrochemical behavior was investigated using cyclic voltammetry (CV). Cyclic voltammetry demonstrated HRP/rGO/GCE has better electrocatalytic activity than bare GCE in the oxidation of L-cysteine oxidation in a solution of acetate buffer. The electrochemical sensor had a broad linear range of 0 µM to 1 mM, a 0.32 µM detection limit, and a sensitivity of 6.08 μA μM−1 cm−2. The developed sensor was successfully used for the L-cysteine detection in a real blood sample with good results.
Recently, carbon nanocomposites have garnered a lot of curiosity because of their distinctive characteristics and extensive variety of possible possibilities. Among all of these applications, the development of sensors with electrochemical properties based on carbon nanocomposites for use in biomedicine has shown as an area with potential. These sensors are suitable for an assortment of biomedical applications, such as prescribing medications, disease diagnostics, and biomarker detection. They have many benefits, including outstanding sensitivity, selectivity, and low limitations on detection. This comprehensive review aims to provide an in-depth analysis of the recent advancements in carbon nanocomposites-based electrochemical sensors for biomedical applications. The different types of carbon nanomaterials used in sensor fabrication, their synthesis methods, and the functionalization techniques employed to enhance their sensing properties have been discussed. Furthermore, we enumerate the numerous biological and biomedical uses of electrochemical sensors based on carbon nanocomposites, among them their employment in illness diagnosis, physiological parameter monitoring, and biomolecule detection. The challenges and prospects of these sensors in biomedical applications are also discussed. Overall, this review highlights the tremendous potential of carbon nanomaterial-based electrochemical sensors in revolutionizing biomedical research and clinical diagnostics.
Copyright © by EnPress Publisher. All rights reserved.