This study examines the relationship between macroeconomic determinants and education levels in eight selected African oil-exporting countries (AOECs) over the period 2000–2022. Drawing on human capital theory, the paper scrutinizes the impact of factors such as income inequality, health outcome, economic growth, human development, unemployment, education expenditure, institutional quality, and energy consumption on education levels. Employing robust estimation techniques such as fixed effects (FE), random effects (RE), pooled mean group (PMG) and cross-section autoregressive distributed lag model (CS-ARDL), the study unveils vital static and dynamic interactions among these determinants and education levels. Findings reveal notable positive and significant connections between education levels and some of the variables—human capital development, institutional quality, government expenditure on education, and energy consumption, while income inequality demonstrates a consistent negative relationship. Unexpectedly, health outcomes exhibit a negative impact on education levels, warranting further investigation. Furthermore, the analysis deepens understanding of long-run and short-run relationships, highlighting, for example, the contradictory impact of gross domestic product (GDP) and unemployment on education levels in AOECs. Finally, the study recommends targeted human development programs, enhanced public investment in education, institutional reforms for good governance, and sustainable energy infrastructure development.
Poverty, and especially the widening disparity between the rich and the poor, leads to social unrest that can interrupt the harmonious development of human society. Understanding the reasons for income inequality, and supporting the development of an effective strategy to reduce this inequality, have been major goals in socioeconomic research around the world. To identify the determinants of the income gap, we calculated the Gini coefficients for Chinese provinces and performed regression analysis and contribution analysis for heterogeneity, using data from 30 Chinese provinces from 2002 to 2018. We found that urbanization, higher education, and foreign direct investment in eastern China and energy in central and western China were important factors that increased the Gini coefficient (i.e., decreased equality). Therefore, paying more attention to the fair distribution of the factors that can increase the Gini coefficient and investing more in the factors that can reduce the Gini coefficient will be the keys to narrowing the income gap. Our approach revealed factors that should be targeted for solutions both in China and in other developing countries that are facing similar difficulties, although the details will vary among countries and contexts.
The objective of this research is to examine the effects of income inequality, governance quality, and their interaction on environmental quality in Asian countries. Time series data are obtained from 45 Asian countries for the period 1996–2020 for this empirical analysis. The research has performed various econometric tests to ensure the robustness and reliability of the results. We have addressed different econometric issues, such as autocorrelation, heteroskedasticity, and cross-sectional dependence, using the Driscoll-Kraay (DK) standard error estimation and endogeneity issues by the system generalized method of moments (S-GMM). The results of the study revealed that income inequality and governance quality have a positive impact on environmental degradation, while the interaction of governance quality with income inequality has a negative effect on it. In addition, economic growth, population growth, urbanization, and natural resource dependency are found to deteriorate the quality of the environment. The findings of the study offer insightful policies to reduce environmental degradation in Asian countries.
A panel data analysis of nonlinear government expenditure and income inequality dynamics in a macroprudential policy regime was conducted on a panel of 15 emerging countries from 1985–2019, where there had been a non-prudential regime from 1985–1999 and a prudential regime from 2000–2019. The paper explored the validity of the nonlinearity between government expenditure and income inequality in the macroprudential policy regime as well as the threshold level at which excessive spending reduces income inequality using the Bayesian spatial lag panel smooth transition regression (BSPSTR) and fix effect models. The BSPSTR model was adopted due to its ability to address the problems of heterogeneity, endogeneity, and cross-section correlation in a nonlinear framework. Moreover, as the transition variable often varies across time and space, the effect of the independent variables can also be time- and space-varying. The results reveal evidence of a nonlinear effect between government spending and income inequality, where the minimum level of government spending is found to be 29.89 percent of GDP, above which expenditure reduces inequality in emerging countries. The findings confirmed an inverted U-shaped relationship. The focal policy recommendation is that fiscal policy decisions that will reinforce the need for more emphasis on education and public expenditure on education and health, as important tools for improving income inequality, are crucial for these economies. Caution is needed when introducing macroprudential policies, especially at a low level of government expenditure.
By reviewing US state-level panel data on infrastructure spending and on per capita income inequality from 1950 to 2010, this paper sets out to test whether an empirical link exists between infrastructure and inequality. Panel regressions with fixed effects show that an increase in the growth rate of spending on highways and higher education in a given decade correlates negatively with Gini indices at the end of the decade, thus suggesting a causal effect from growth in infrastructure spending to a reduction in inequality through better access to education and opportunities for employment. More significantly, this relationship is more pronounced with inequality at the bottom 40 percent of the income distribution. In addition, infrastructure expenditures on highways are shown to be more effective at reducing inequality. By carrying out a counterfactual experiment, the results show that those US states with a significantly higher bottom Gini coefficient in 2010 had underinvested in infrastructure during the previous decade. From a policy-making perspective, new innovations in finance for infrastructure investments are developed, for the US, other industrially advanced countries and also for developing economies.
Copyright © by EnPress Publisher. All rights reserved.