Soil erosion is characterized by the wearing away or loss of the uppermost layer of soil, driven by water, wind, and human activities. This process constitutes a significant environmental issue, with adverse effects on water quality, soil health, and the overall stability of ecosystems across the globe. This study focuses on the Anuppur district of Madhya Pradesh, India, employing the Revised Universal Soil Loss Equation (RUSLE) integrated with Geographic Information System (GIS) tools to estimate and spatially analyze soil erosion and fertility risk. The various factors of the model, like rainfall erosivity (R), soil erodibility (K), slope length and steepness (LS), conservation practices (P), and cover management factor (C), have been computed to measure annual soil loss in the district. Each factor was derived using geospatial datasets, including rainfall records, soil characteristics, a Digital Elevation Model (DEM), land use/land cover (LULC) data, and information on conservation practices. GIS methods are used to map the geographical variation of soil erosion, providing important information on the area’s most susceptible to erosion. The outcome of the study reveals that 3371.23 km2, which constitutes 91% of the district’s total area, is identified as having mild soil erosion; in contrast, 154 km2, or 4%, is classified as moderate soil erosion, while 92 km2, representing 2.5%, falls under the high soil erosion category. Ad
The sustainable development of Madeira Island necessitates the implementation of more precise and targeted planning strategies to address its regional challenges. Given the urgency of this issue within the context of sustainability, planning approaches must be grounded in and reinforced by a comprehensive array of thematic studies to fully grasp the complexities involved. This research leverages Geographic Information Systems (GIS) to analyze land use and occupancy patterns and their evolution within the municipality of Machico on Madeira Island. The study provides a nuanced perspective on the urban structure’s stagnation in the region, while concurrently highlighting the dynamic shifts in agricultural practices. Furthermore, it elucidates the transformation of predominant native vegetation within the municipality from 1990 to 2018. Notably, the research underscores the alarming decline in native vegetation due to anthropogenic activities, emphasizing the need for more rigorous monitoring by regional authorities to safeguard and preserve these valuable landscapes, habitats, and ecosystems.
The increasing demand for electricity and the need to reduce carbon emissions have made optimizing energy usage and promoting sustainability critical in the modern economy. This research paper explores the design and implementation of an Intelligent-Electricity Consumption and Billing Information System (IEBCIS), focusing on its role in addressing electricity sustainability challenges. Using the Design Science Research (DSR) methodology, the system’s architecture collects, analyses, and visualizes electricity usage data, providing users with valuable insights into their consumption patterns. The research involved developing and validating the IEBCIS prototype, with results demonstrating enhanced real-time monitoring, load shedding schedules, and billing information. These results were validated through user testing and feedback, contributing to the scientific knowledge of intelligent energy management systems. The contributions of this research include the development of a framework for intelligent energy management and the integration of data-driven insights to optimize electricity consumption, reduce costs, and promote sustainable energy use. This research was conducted over a time scope of two years (24 months) and entails design, development, pilot test implementation and validation phases.
The intensification of urbanization worldwide, particularly in China, has led to significant challenges in maintaining sustainable urban environments, primarily due to the Urban Heat Island (UHI) effect. This effect exacerbates urban thermal stress, leading to increased energy consumption, poor air quality, and heightened health risks. In response, urban green spaces are recognized for their role in ameliorating urban heat and enhancing environmental resilience. This paper has studied the microclimate regulation effects of three representative classical gardens in Suzhou—the Humble Administrator’s Garden, the Lingering Garden and the Canglang Pavilion. It aims to explore the specific impacts of water bodies, vegetation and architectural features on the air temperature and relative humidity within the gardens. With the help of Geographic Information System (GIS) technology and the Inverse Distance Weighted (IDW) spatial interpolation method, this study has analyzed the microclimate regulation mechanisms in the designs of these traditional gardens. The results show that water bodies and lush vegetation have significant effects on reducing temperature and increasing humidity, while the architectural structures and rocks have affected the distribution and retention of heat to some extent. These findings not only enrich our understanding of the role of the design principles of classical gardens in climate adaptability but also provide important theoretical basis and practical guidance for the design of modern urban parks and the planning of sustainable urban environments. In addition, the study highlights GIS-based spatial interpolation as a valuable tool for visualizing and optimizing thermal comfort in urban landscapes, providing insights for developing resilient urban green spaces.
The implementation of data interoperability in healthcare relies heavily on policy frameworks. However, many hospitals across South Africa are struggling to integrate data interoperability between systems, due to insufficient policy frameworks. There is a notable awareness that existing policies do not provide clear actionable direction for interoperability implementation in hospitals. This study aims to develop a policy framework for integrating data interoperability in public hospitals in Gauteng Province, South Africa. The study employed a conceptual framework grounded in institutional theory, which provided a lens to understand policies for interoperability. This study employed a convergence mixed method research design. Data were collected through an online questionnaire and semi-structured interviews. The study comprised 144 clinical and administrative personnel and 16 managers. Data were analyzed through descriptive and thematic analysis. The results show evidence of coercive isomorphism that public hospitals lack cohesive policies that facilitate data interoperability. Key barriers to establishing policy framework include inadequate funding, ambiguous guidelines, weak governance, and conflicting interests among stakeholders. The study developed a policy to facilitate the integration of data interoperability in hospitals. This study underscores the critical need for the South African government, legislators, practitioners, and policymakers to consult and involve external stakeholders in the policy-making processes.
Copyright © by EnPress Publisher. All rights reserved.