Finding the right technique to optimize a complex problem is not an easy task. There are hundreds of methods, especially in the field of metaheuristics suitable for solving NP-hard problems. Most metaheuristic research is characterized by developing a new algorithm for a task, modifying or improving an existing technique. The overall rate of reuse of metaheuristics is small. Many problems in the field of logistics are complex and NP-hard, so metaheuristics can adequately solve them. The purpose of this paper is to promote more frequent reuse of algorithms in the field of logistics. For this, a framework is presented, where tasks are analyzed and categorized in a new way in terms of variables or based on the type of task. A lot of emphasis is placed on whether the nature of a task is discrete or continuous. Metaheuristics are also analyzed from a new approach: the focus of the study is that, based on literature, an algorithm has already effectively solved mostly discrete or continuous problems. An algorithm is not modified and adapted to a problem, but methods that provide a possible good solution for a task type are collected. A kind of reverse optimization is presented, which can help the reuse and industrial application of metaheuristics. The paper also contributes to providing proof of the difficulties in the applicability of metaheuristics. The revealed research difficulties can help improve the quality of the field and, by initiating many additional research questions, it can improve the real application of metaheuristic algorithms to specific problems. The paper helps with decision support in logistics in the selection of applied optimization methods. We tested the effectiveness of the selection method on a specific task, and it was proven that the functional structure can help the decision when choosing the appropriate algorithm.
Recent times have seen significant advancements in AI and NLP technologies, poised to revolutionize logistical decision-making across industries. This study investigates integrating ChatGPT, an advanced AI language model, into strategic, tactical, and operational logistics. Examining its applicability, benefits, and limitations, the study delves into ChatGPT's capacity for strategic logistics planning, facilitating nuanced decision-making through natural language interactions. At the tactical level, it explores ChatGPT's role in optimizing route planning and enhancing real-time decision support. The operational aspect scrutinizes ChatGPT's capabilities in micro-level logistics and emergency response. Ethical implications, encompassing data security and human-AI trust dynamics, are also analyzed. This report furnishes valuable insights for the logistics sector, emphasizing AI's potential in reshaping decision-making while underscoring the necessity for foresight, evaluation, and ethical considerations in AI integration. In this publication, it is assumed that ChatGPT is not entirely reliable for decision-making in the logistics field: at the strategic level, it can be effectively used for "brainstormin" in preparing decisions, but at the tactical and operational level, the depth of the knowledge is not sufficient to make appropriate decisions. Therefore, the answers provided by ChatGPT to the defined logistic tasks are compared with real logistic solutions. The article highlights ChatGPT's effectiveness at different levels of logistics and clarifies its potential and limitations in the logistics field.
This study evaluates the sustainability and ethical practices of Kerry Logistics Network Limited (KLN), a prominent logistics service provider headquartered in Hong Kong. Using normative ethical theories, stakeholder analysis, and the Circle of Sustainability framework, this research examines KLN’s alignment with global sustainability standards, particularly the United Nations Sustainable Development Goals (SDGs). The findings reveal that KLN has achieved significant milestones in environmental management, such as reducing greenhouse gas emissions by 11% from 2021 to 2022 through the deployment of electric trucks and incorporating renewable energy in warehouse operations. KLN has also enhanced social responsibility and governance practices by implementing fair labor policies and establishing a rigorous code of conduct, ensuring compliance with ethical guidelines across its supply chain. However, the study identifies areas for improvement, including biodiversity actions, battery recycling processes, and transparency in stakeholder engagement. Emphasizing the importance of third-party validation, this paper underscores KLN’s leadership in the logistics industry and provides insights for other companies aiming to improve sustainability performance through comprehensive, verifiable practices.
This study evaluated the development and validation of an integrated operational model for the Underground Logistics System (ULS) in South Korea’s metropolitan area, aiming to address challenges in urban logistics and freight transportation by highlighting the potential of innovative logistics systems that utilize underground spaces. This study used conceptual modeling to define the core concepts of ULS and explored the system architecture, including cargo handling, transportation, operations and control systems, as well as the roles of cargo crews and train drivers. The ULS operational scenarios were verified through model simulation, incorporating both logical and temporal analyses. The simulation outcomes affirm the model’s logical coherence and precision, emphasizing ULS’s pivotal role in boosting logistics efficiency. Thus, ULS systems in Korea offer prospects for elevating national competitiveness and spurring urban growth, underscoring the merits of ULS in navigating contemporary urban challenges and championing sustainability.
Purpose—Quality service plays a significant role in enhancing customer satisfaction and loyalty. The main objective of this research is to investigate the effect of Salalah port service quality on customer satisfaction. Design/methodology/approach—This paper used a quantitative research design. Data were collected from 300 repeated customer of Salalah Port in Oman. Statistical Package (SPSS) version 25.0 was used for analysis of data and adopted to test the hypothesized model. Findings—The research findings confirm the positive influence of the five dimensions of service quality – tangible, empathy, reliability, responsiveness, assurance (TERRA) on customer satisfaction. Originality/value—The findings of this study develop the literature by adding empirical research evidence that the TERRA of Salalah port service quality which have a significant effect on customer satisfaction. The result also provide evidence from the Arab region where the data and research in this region are limited.
This paper addresses the main logistics challenges in used car maritime traffic from Europe to West Africa. Thus, the methodology (quantitative and qualitative) analyses data from the International Organization of Motor Vehicle Manufacturers (OICA), from 2015 to 2023 of government and port authorities to show the importance of used car market for mobility and socioeconomic activities. This is supplemented by surveys based on direct observation in the field, questionnaires and interviews involving in Europe 55 stakeholders and 127 in Africa. The results demonstrate that cars used and their parts, but not wrecks, are essential for motorization in West Africa. A pre-export process needs to be set up to ensure that exported vehicles are parked in better condition to meet the required common environmental standards for sustainable mobility.
Copyright © by EnPress Publisher. All rights reserved.