To achieve the Paris Agreement’s temperature goal, greenhouse gas emissions should be reduced as soon as, and by as much, as possible. By mid-century, CO2 emissions would need to be cut to zero, and total greenhouse gases would need to be net zero just after mid-century. Achieving carbon neutrality is impossible without carbon dioxide removal from the atmosphere through afforestation/reforestation. It is necessary to ensure carbon storage for a period of 100 years or more. The study focuses on the theoretical feasibility of an integrated climate project involving carbon storage, emissions reduction and sequestration through the systemic implementation of plantation forestry of fast-growing eucalyptus species in Brazil, the production of long-life wood building materials and their deposition. The project defines two performance indicators: a) emission reduction units; and b) financial costs. We identified the baseline scenarios for each stage of the potential climate project and developed different trajectory options for the project scenario. Possible negative environmental and reputational effects as well as leakages outside of the project design were considered. Over 7 years of the plantation life cycle, the total CO2 sequestration is expected to reach 403 tCO2∙ha−1. As a part of the project, we proposed to recycle or deposit for a long term the most part of the unused wood residues that account for 30% of total phytomass. The full project cycle can ensure that up to 95% of the carbon emissions from the grown wood will be sustainably avoided.
This study aims to investigate what influences local workers over the age of 40 to work and stay employed in oil palm plantations. 414 individuals participated in a face-to-face interview that provided the study’s primary source of data. Exploratory Factor Analysis was used to analyse the given data. The study revealed that factors influencing local workers over the age of 40 years to leave or continue working in oil palm plantations can be classified as income factors, internal factors and external factors. The income factor was the most significant factor as the percentage variance explained by the factor was 26.792% and Cronbach Alpha was high at 0.870. Therefore, the study suggested that the oil palm plantation managements pay more attention to income elements such as basic salary, wage rate paid to the workers and allowance given to the workers since these elements contribute to the monthly total income received by the workers and in turn be able to attract more local workers to work and remain in the plantations.
Bamboo is one of the noble plant species in Ethiopia. Household (HH) income and construction role of highland bamboo (Oldeania alpina (K. Schum.) Stapleto) stands were assessed at Masha district, Southern Ethiopia. Three peasant associations (PAs), Yepo, Yina and Gada, 7–15 key informants and 68, 46, 31 households, respectively were interviewed about the cost and income of bamboo to compare with woody climbers, honey, and mushroom in 2021. Bamboo was one of the main sources of income in all PAs, at least for fencing or house construction. In Yepo, Yina and Gada bamboo accounts 0.7%, 28.1%, 16.3% of the HH NTFP income, respectively. The local people responded that bamboo constructed houses and fences were durable for 15–30 and 2–10 years, respectively. In constructing a 2.44–4.27 m radius local house in Yepo, Yina and Gada 2.4–6 m3, 4.1–5.82 m3 and 3.1–4.3 m3 bamboo culms were harvested at 15, 20, and 30 years interval, respectively by each HH. Bamboo young shoots were also seasonally used for food. Although bamboo provides multiple uses, like substitute for wood and environmental services, it was facing different problems of deforestation. Therefore, policy attention is highly important for bamboo sustainable utilization.
The Urabá region, known for its banana production, faces significant challenges due to seasonal droughts that affect crop productivity. The implementation of innovative technologies, such as efficient irrigation systems, is presented as a potential solution to improve the sustainability and profitability of plantations. This study validates the implementation of an irrigation system in a banana (Musa spp.) plantation located in the region of Urabá, in order to meet the water needs of the crop during periods of drought. A case study was carried out in a banana plantation in the region of Urabá, considering the maximum and minimum monthly losses due to drought, and a random sample was used to measure the weight before and after the implementation of the irrigation system, in order to carry out an economic analysis. The study shows that the implementation of a sprinkler irrigation system increases the average weight of the harvested bunches by 20%, which is reflected in an annual increase of 30.3% of exported boxes, obtaining satisfactory results in terms of internal rate of return, cost-benefit ratio and return on investment. The implementation of irrigation systems makes it possible to increase competitiveness in international markets, especially in regions such as Urabá, where the use of these technologies is still incipient.
This study aims to examine and challenge the impact of local government policy governance on the oil palm plantation sector in Riau Province, Indonesia. It was discovered that 1,628 million hectares of illegal oil palm plantations are located within forest areas. Plantation area and crop harvest areas are declining due to the increase in damaged old plants, low productivity of plantation crops, inadequate facilities and infrastructure conditions, low technology application, plantation business licensing, limited downstream plantation industry and marketing, assistance in changing the attitudes, behavior, and skills of farmers. The methodology used was exploratory qualitative to explore this topic, and the determination of research topics was conducted using Biblioshiny application analysis. Then, the data was analyzed using Nvivo 12 Plus software. The results of this study discovered that the policy governance of the oil palm plantation sector as a leading commodity in Riau Province, Indonesia, is influenced by three dimensions: firstly, the actor dimension; secondly, the structural dimension; and third, the empirical dimension of governance. This research contributes as a knowledge reference to oil palm plantations.
Objective: The influence of climate on forest stands cannot be ignored, but most of the previous forest stand growth models were constructed under the presumption of invariant climate and could not estimate the stand growth under climate change. The model was constructed to provide a theoretical basis for forest operators to take reasonable management measures for fir under the influence of climate. Methods: Based on the survey data of 638 cedar plantation plots in Hunan Province, the optimal base model was selected from four biologically significant alternative stand basal area models, and the significant climate factors without serious covariance were selected by multiple stepwise regression analysis. The optimal form of random effects was determined, and then a model with climatic effects was constructed for the cross-sectional growth of fir plantations. Results: Richards formula is the optimal form of the basic model of stand basal area growth. The coefficient of adjustment was 0.8355; the average summer maximum temperature and the water vapor loss in Hargreaves climate affected the maximum and rate of fir stand stand growth respectively, and were negatively correlated with the stand growth. The adjusted coefficient of determination of the fir stand area break model with climate effects was 0.8921, the root mean square error (RMSE) was 3.0792, and the mean relative error absolute value (MARE) was 9.9011; compared with the optimal base model, improved by 6.77%, RMSE decreased by 19.04%, and MARE decreased by 15.95%. Conclusion: The construction of the stand cross-sectional area model with climate effects indicates that climate has a significant influence on stand growth, which supports the rationality of considering climate factors in the growth model, and it is important for the regional stand growth harvest and management of cedar while improving the accuracy and applicability of the model.
Copyright © by EnPress Publisher. All rights reserved.