The Ecuadorian electricity sector encompasses generation, transmission, distribution and sales. Since the change of the Constitution in Ecuador in 2008, the sector has opted to employ a centralized model. The present research aims to measure the efficiency level of the Ecuadorian electricity sector during the period 2012–2021, using a DEA-NETWORK methodology, which allows examining and integrating each of the phases defined above through intermediate inputs, which are inputs in subsequent phases and outputs of some other phases. These intermediate inputs are essential for analyzing efficiency from a global view of the system. For research purposes, the Ecuadorian electricity sector was divided into 9 planning zones. The results revealed that the efficiency of zones 6 and 8 had the greatest impact on the overall efficiency of the Ecuadorian electricity sector during the period 2012–2015. On the other hand, the distribution phase is the most efficient with an index of 0.9605, followed by sales with an index of 0.6251. It is also concluded that the most inefficient phases are generation and transmission, thus verifying the problems caused by the use of a centralized model.
The purpose of this research is to estimate the differences in sales levels between businesses owned by individuals who self-identify as Indigenous (IE) and those who do not (NIE), as well as between males (ME) and females (WE), and how this intersection may affect their sales levels. To accomplish this, an Analysis of Variance (ANOVA) is used to compare the means between the groups analyzed, and Tukey’s Honestly Significant Differences (HSD) is used to determine the magnitude and direction of these differences. The results of the study show that indigenous-owned businesses have sales that are 26% lower than the general average, while women-owned businesses have sales that are 70.6% lower in the same comparison. In addition, businesses run by indigenous women have sales that are 93.5% lower on average. These findings suggest that the challenges faced by entrepreneurs reflect the structural inequalities observed in other areas of society and highlight the need for public and private policies focused on reducing these gaps.
This study aims to discover the relationship between growth sales, capital structure, and corporate governance on financial performance of energy and basic material sector public companies in Indonesia. Financial performance is observed from 2 aspects: market performance (Tobin’s Q) and profitability performance (ROA). The population in this study is firms in the energy and basic material sector on Indonesia Stock Exchange. The total population is 248 firms. 39 firms were selected as samples. The data is obtained from the annual report which starts from the period 2018 to 2022. A total of the population was determined as samples by purposive sampling method. Data analysis using panel data regression. The result shows: 1) Growth Sales have a significant influence on market performance; however, it does not have a significant effect on profitability performance. 2) Capital Structure significantly influences market and profitability performance 3) Corporate governance significantly influences market and profitability performance. Suggestions for companies that must strive to increase sales, maintain good corporate governance and pay attention to the company’s capital structure in a balanced manner.
The major goal of decisions made by a business organization is to enhance business performance. These days, owners, managers and other stakeholders are seeking for opportunities of modelling and automating decisions by analysing the most recent data with the help of artificial intelligence (AI). This study outlines a simple theoretical model framework using internal and external information on current and potential clients and performing calculations followed by immediate updating of contracting probabilities after each sales attempt. This can help increase sales efficiency, revenues, and profits in an easily programmable way and serve as a basis for focusing on the most promising deals customising personal offers of best-selling products for each potential client. The search for new customers is supported by the continuous and systematic collection and analysis of external and internal statistical data, organising them into a unified database, and using a decision support model based on it. As an illustration, the paper presents a fictitious model setup and simulations for an insurance company considering different regions, age groups and genders of clients when analysing probabilities of contracting, average sales and profits per contract. The elements of the model, however, can be generalised or adjusted to any sector. Results show that dynamic targeting strategies based on model calculations and most current information outperform static or non-targeted actions. The process from data to decision-making to improve business performance and the decision itself can be easily algorithmised. The feedback of the results into the model carries the potential for automated self-learning and self-correction. The proposed framework can serve as a basis for a self-sustaining artificial business intelligence system.
Ticket revenues are crucial for the financial success of sports teams. To maximize these revenues, teams continuously explore effective ticket promotional strategies. One such strategy includes partial season plans, which mirror bundle offers common across various industries. Another widespread promotional strategy across industries is offering discounted credit (i.e., store credit purchased at a lower price than its face value). However, its application in sports (e.g., providing a $500 credit for tickets at $450) remains limited. Therefore, this study explores critical questions such as: “How effective is offering discounted credit compared to partial season plans?” and “What factors influence ticket promotion preferences?” Consequently, the study employed a 2 × 2 × 2 experimental designs, considering three independent variables: promotion type (discounted credit vs. partial season plans), promotion flexibility (predefined vs. customizable), and the consumer’s distance to the venue (near vs. distant). Results indicated that partial season plans generated significantly higher perceived value and purchase intentions while presenting lower perceived risks than discounted credit . Promotion flexibility did not significantly influence the three dependent variables , but the distance to the venue did . Both practical and theoretical implications of these findings are discussed.
Copyright © by EnPress Publisher. All rights reserved.