In today’s fast-moving, disrupted business environment, supply chain risk management is crucial. More critically, Industry 4.0 has conferred competitive advantages on supply chains through the integration of digital technologies into manufacturing and logistics, but it also implies several challenges and opportunities regarding the management of these risks. This paper looks at some ways emerging technologies, especially Artificial Intelligence (AI), help address pressing concerns about the management of risk and sustainability in logistics and supply chains. The study, using a systemic literature review (SLR) backed by a mapping study based on the Scopus database, reveals the main themes and gaps of prior studies. The findings indicate that AI can substantially enhance resilience through early risk identification, optimizing operations, enriching decision-making, and ensuring transparency throughout the value chain. The key message from the study is to bring out what technology contributes to rendering supply chains resilient against today’s uncertainties.
The study explores improving opportunities of forecasting accuracy from the traditional method through advanced forecasting techniques. This enables companies to optimize inventory management, production planning, and reducing the travelling time thorough vehicle route optimization. The article introduced a holistic framework by deploying advanced demand forecasting techniques i.e., AutoRegressive Integrated Moving Average (ARIMA) and Recurrent Neural Network-Long Short-Term Memory (RNN-LSTM) models, and the Vehicle Routing Problem with Time Windows (VRPTW) approach. The actual milk demand data came from the company and two forecasting models, ARIMA and RNN-LSTM, have been deployed using Python Jupyter notebook and compared them in terms of various precision measures. VRPTW established not only the optimal routes for a fleet of six vehicles but also tactical scheduling which contributes to a streamlined and agile raw milk collection process, ensuring a harmonious and resource-efficient operation. The proposed approach succeeded on dropping about 16% of total travel time and capable of making predictions with approximately 2% increased accuracy than before.
Global trade is based on coordinated factors, that means labor and products are moved from their point of origin to the point of use. Strategies have a significant impact on global trade because they enable the effective development of goods across international borders. The decision making is an important task for the development of Logistics Supply Chain (LSC) infrastructure and process. Decisions on supplier selection, production schedule, transportation routes, inventory levels, pricing strategies, and other issues need to be made. These decisions may have a big influence on customer service, profitability, operational efficiency, and overall competitiveness. The Artificial Intelligence (AI) approach of Fuzzy Preference Ranking Organization Method for Enrichment Evaluation (Fuzzy-Promethee-2) is used to assess the priority selection of the factors associated with the LSC and evaluate the importance in global trade. The role of AI is very useful compare to statistical analysis in terms of decision making. The computational analysis placed promotion of exports as the most important priority out of five selected attributes in LSC, with infrastructure development. The result suggests that LSC depends heavily on export promotion as the most significant attribute. Infrastructural development also appeared another factor influencing LSC. The foreign investment was ranked the lowest. The evaluated results are useful for the policy makers, supply chain managers and the logistics professionals associated with the supply chain management.
In this paper, we will provide an extensive analysis of how Generative Artificial Intelligence (GenAI) could be applied when handling Supply Chain Management (SCM). The paper focuses on how GenAI is more relevant in industries, and for instance, SCM where it is employed in tasks such as predicting when machines are due for a check-up, man-robot collaboration, and responsiveness. The study aims to answer two main questions: (1) What prospects can be identified when the tools of GenAI are applied in SCM? Secondly, it aims to examine the following question: (2) what difficulties may be encountered when implementing GenAI in SCM? This paper assesses studies published in academic databases and applies a structured analytical framework to explore GenAI technology in SCM. It looks at how GenAI is deployed within SCM and the challenges that have been encountered, in addition to the ethics. Moreover, this paper also discusses the problems that AI can pose once used in SCM, for instance, the quality of data used, and the ethical concerns that come with, the use of AI in SCM. A grasp of the specifics of how GenAI operates as well as how to implement it successfully in the supply chain is essential in assessing the performance of this relatively new technology as well as prognosticating the future of generation AI in supply chain planning.
The operational performance of container ports is crucial for efficient logistics and trade. However, there is limited understanding of how external integration through Customer and Supplier Integration (SCI-CI and SCI-SI) impacts port operational performance (POP), particularly in emerging markets like Oman. This study addresses this gap by examining the relationship between SCI-CI, SCI-SI, and POP, and explores the mediating role of supply chain management (SCM) practices in this context. Using the Resource-Based View (RBV) as the theoretical framework, the study employed a quantitative cross-sectional survey method. A total of 377 questionnaires were distributed to managers at Sohar and Salalah ports, with 331 usable responses obtained, representing an 88 percent response rate. The data were analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM). The results indicate that SCI-CI and SCI-SI have significant direct and indirect positive effects on POP, and they directly influence SCM practices. SCM practices, in turn, significantly enhance POP. Notably, SCM practices partially mediate the relationship between SCI-CI and SCI-SI with POP. These findings underscore the strategic importance of external integration and SCM practices as internal resources for improving port performance. This research provides valuable insights for decision-makers and policymakers in optimizing port operations.
This study aims to investigate the relationship between internal and information integration within the supply chain (SCI-INTI and SCI-INFI), supply chain management (SCM) practices, and port operational performance (POP) in Oman’s container ports. Additionally, it explores the mediating role of SCM practices in the relationship between SCI-INTI, SCI-INFI, and POP in Oman. To meet the study’s objectives, a quantitative cross-sectional survey method was used. A total of 377 questionnaires were distributed to managers responsible for supply chain operations in the main departments at Sohar and Salalah ports, yielding 331 usable responses, with a response rate of 88 percent. The data collected were analyzed using partial least squares structural equation modeling (PLS-SEM). The results show that both internal and information integration within the supply chain have positive and statistically significant effects on the operational performance of Oman’s container ports (POP). Specifically, Supply Chain Integration with Internal Integration (SCI-INTI) significantly impacts POP (β = 0.249, t = 5.039, p < 0.001), and Supply Chain Integration with Information Integration (SCI-INFI) also significantly affects POP (β = 0.259, t = 4.966, p < 0.001). Additionally, SCI-INTI positively influences Supply Chain Management Practices (SCMP) (β = 0.381, t = 7.674, p < 0.001), as does SCI-INFI (β = 0.484, t = 9.878, p < 0.001). Furthermore, SCMP positively and significantly influences the operational performance of Oman’s container ports (β = 0.424, t = 7.643, p < 0.001). These findings contribute to the literature by emphasizing the significance of internal and information integration within the supply chain and SCM practices as strategic internal resources and capabilities that enhance operational performance in container ports. Understanding these elements enables decision-makers and policymakers within government port authorities and port operating companies to optimize internal resources and capabilities to improve port operational performance.
Copyright © by EnPress Publisher. All rights reserved.