A numerical investigation utilizing water as the working fluid was conducted on a 2D closed loop pulsating heat pipe (CLPHP) using the CFD software AnsysFluent19.0. This computational fluid dynamics (CFD) investigation explores three instances where there is a consistent input of heat flux in the evaporator region, but the temperatures in the condenser region differ across the cases. In each case, the condenser temperatures are set at 10 ℃, 20 ℃, and 30 ℃ respectively. The transient simulation is conducted with uniform time steps of 10 s. Generally, the heat rejection medium operated at a lower temperature performs better than at a higher temperature. In this CFD study the thermal resistances gets decreased with the decreasing value of condenser temperatures and the deviation of 35.31% of thermal resistance gets decreased with the condenser region operated at the temperature of 10 ℃.
This study investigated the variability of climate parameters and food crop yields in Nigeria. Data were sourced from secondary sources and analyzed using correlation and multivariate regression. Findings revealed that pineapple was more sensitive to climate variability (76.17%), while maize and groundnut yields were more stable with low sensitivity (0.98 and 1.17%). Yields for crops like pineapple (0.31 kg/ha) were more sensitive to temperature, while maize, beans, groundnut, and vegetable yields were less sensitive to temperature with yields ranging from 0.15 kg/ha, 0.21 kg/ha, 0.18 kg/ha, and 0.12 kg/ha respectively. On the other hand, maize, beans, groundnut, and vegetable yields were more sensitive to rainfall ranging from 0.19kg/ha, 0.15kg/ha, 0.22 kg/ha, and 0.18 kg/ha respectively compared to pineapple yields which decreased with increase rainfall (−0.25 kg/ha). The results further showed that for every degree increase in temperature, maize, pineapple, and beans yields decreased by 0.48, 0.01, and 2.00 units at a 5 % level of significance, while vegetable yield decreased by 0.25 units and an effect was observed. Also, for every unit increase in rainfall, maize, pineapple, groundnut, and vegetable yields decreased by 3815.40, 404.40, 11,398.12, and 2342.32 units respectively at a 5% level, with an observed effect for maize yield. For robustness, these results were confirmed by the generalized additive and the Bayesian linear regression models. This study has been able to quantify the impact of temperature on food crop yields in the African context and employed a novel analytical approach combining the correlation matrix and multivariate linear regression to examine climate-crop yield relationships. The study contributes to the existing body of knowledge on climate-induced risks to food security in Nigeria and provides valuable insights for policymakers, farmers, government, and stakeholders to develop effective strategies to mitigate the impacts of climate change on food crop yields through the integration of climate-smart agricultural practices like agroforestry, conservation agriculture, and drought-tolerant varieties into national agricultural policies and programs and invest in climate information dissemination channels to help consider climate variability in agricultural planning and decision-making, thereby enhancing food security in the country.
The objective of this study is to explore the relationship between changing weather conditions and tourism demand in Thailand across five selected provinces: Chonburi (Pattaya), Surat Thani, Phuket, Chiang Mai, and Bangkok. The annual data used in this study from 2012 to 2022. The estimation method is threshold regression (TR). The results indicate that weather conditions proxied by the Temperature Humidity Index (THI) significantly affect tourism demand in these five provinces. Specifically, changes in weather conditions, such as an increase in temperature, generally result in a decrease in tourism demand. However, the impact of weather conditions varies according to each province’s unique characteristics or highlights. For example, tourism demand in Bangkok is not significantly affected by weather conditions. In contrast, provinces that rely heavily on maritime tourism, such as Chonburi (Pattaya), Phuket, and Surat Thani, are notably affected by weather conditions. When the THI in each province rises beyond a certain threshold, the demand for tourism in these provinces by foreign tourists decreases significantly. Furthermore, economic factors, particularly tourists’ income, significantly impact tourism demand. An increase in the income of foreign tourists is associated with a decrease in tourism in Pattaya. This trend possibly occurs because higher-income tourists tend to upgrade their travel destinations from Pattaya to more upscale locations such as Phuket or Surat Thani. For Thai tourists, an increase in income leads to a decrease in domestic tourism, as higher incomes enable more frequent international travel, thereby reducing tourism in the five provinces. Additionally, the study found that the availability and convenience of accommodation and food services are critical factors influencing tourism demand in all the provinces studied.
This study analyses the dynamic development of soybean (Glycine max (L.) Merr.) breeding in Russia, particularly examining its historical development, status, and future predictions. With the global demand for vegetable protein rising, understanding Russia’s potential contribution becomes crucial. This research provides valuable insights, offering precise data that may be unfamiliar to international researchers and the private sector. The authors trace the history of soybean selection in Russia, emphasizing its expansion from the Far East to other regions in Russia. The expansion is primarily attributed to the pioneering work of Soviet breeder V. A. Zolotnitsky and the development of the soybean variety in the Amur region in the 1930s. The study highlights the main areas of soybean variety originators, with approximately 40% of foreign varieties registered. The Krasnodar and Amur regions emerge as critical areas for breeding soybean varieties. In Russia, the highest yield potential of soybeans is in the Central Federal District. At the same time, the varieties registered in the Volga Federal District have higher oil content, and the Far Eastern Federal District has high protein content in the registered soybean varieties. The research outlines the state’s pivotal role in supporting soybean breeding and fostering a competitive market with foreign breeders. The study forecasts future soybean breeding development and the main factors that can influence the industry.
The quality of indoor classroom conditions influences the well-being of its occupants, students and teachers. Especially the temperature, outside acceptable limits, can increase the risk of discomfort, illness, stress behaviors and cognitive processes. Assuming the importance of this, in this quantitative observational study, we investigated the relationship between two environmental variables, temperature and humidity, and students’ basic emotions. Data were collected over four weeks in a secondary school in Spain, with environmental variables recorded every 10 minutes using a monitoring kit installed in the classroom, and students’ emotions categorized using Emotion Recognition Technology (ERT). The results suggest that high recorded temperatures and humidity levels are associated with emotional responses among students. While linear regression models indicate that temperature and humidity may influence students’ emotional experiences in the classroom, the explanatory power of these models may be limited, suggesting that other factors could contribute to the observed variability in emotions. The implications and limitations of these findings for classroom conditions and student emotional well-being are discussed. Recognizing the influence of environmental conditions and monitoring them is a step toward establishing smart classrooms.
Copyright © by EnPress Publisher. All rights reserved.