Since 2019, Togo has resolutely engaged in the decentralization process marked by communalization and elections of municipal councilors. Financial autonomy constitutes an essential lever for the free administration of municipalities, allowing them to ensure decision-making and the implementation of development projects. However, despite a legal and regulatory framework defining taxation specific to local authorities, Togolese municipalities are often perceived as needing more financial resources. This study aims to map the financing mechanisms for decentralization in Togo and analyze their contribution to municipal budgets. By adopting a quantitative approach combining documentary analysis and interviews with 188 experts and practitioners of local finance from various Togolese structures, four main financing mechanisms were identified: local, national, Community, and international. Among these mechanisms, own resources (in particular from the sale of products and services, fiscal and non-fiscal taxes) and state transfers via the Support Fund for Local Authorities emerge as the primary sources of financing for municipalities. However, the study reveals that several instruments of local mechanisms, although institutionally defined, still need to be updated in many municipalities, thus limiting their effectiveness in resource mobilization. These results highlight the importance of optimizing the management of local mechanisms to strengthen municipalities’ financial autonomy and support territories’ sustainable development.
The integration of Big Earth Data and Artificial Intelligence (AI) has revolutionized geological and mineral mapping by delivering enhanced accuracy, efficiency, and scalability in analyzing large-scale remote sensing datasets. This study appraisals the application of advanced AI techniques, including machine learning and deep learning models such as Convolutional Neural Networks (CNNs), to multispectral and hyperspectral data for the identification and classification of geological formations and mineral deposits. The manuscript provides a critical analysis of AI’s capabilities, emphasizing its current significance and potential as demonstrated by organizations like NASA in managing complex geospatial datasets. A detailed examination of selected AI methodologies, criteria for case selection, and ethical and social impacts enriches the discussion, addressing gaps in the responsible application of AI in geosciences. The findings highlight notable improvements in detecting complex spatial patterns and subtle spectral signatures, advancing the generation of precise geological maps. Quantitative analyses compare AI-driven approaches with traditional techniques, underscoring their superiority in performance metrics such as accuracy and computational efficiency. The study also proposes solutions to challenges such as data quality, model transparency, and computational demands. By integrating enhanced visual aids and practical case studies, the research underscores its innovations in algorithmic breakthroughs and geospatial data integration. These contributions advance the growing body of knowledge in Big Earth Data and geosciences, setting a foundation for responsible, equitable, and impactful future applications of AI in geological and mineral mapping.
This study examines the determinants of audit quality and their impact on detecting financial statement fraud at public accounting firms member of OAI Solusi Manajemen Nusantara in Indonesia. Using a quantitative approach, data was collected through a structured questionnaire distributed to auditors and staff. Key findings highlight the significant influence of auditor independence, professional proficiency, and supervision actions on conducting effective audits, thereby enhancing fraud detection capabilities. The research identifies challenges such as the focus on Indonesian firms and potentially limiting broader applicability. Recommendations include enhancing auditor training, adopting stringent audit procedures and technology, and ensuring adherence to auditing standards to improve audit quality and uphold financial reporting integrity. This study underscores the critical role of audit quality in preventing and detecting financial statement fraud, suggesting avenues for future research to explore additional influencing factors.
The tourism sector in the Aseer region of Saudi Arabia is experiencing significant growth and development, aligning with the country’s Vision 2030 strategic framework. However, rapid growth can lead to strategic drift if not managed with vigilance. This study aims to examine the role of strategic vigilance in reducing strategic drift in the tourism sector. The study employs a quantitative approach, utilizing a questionnaire distributed to a sample of 220 staff and directors from the tourism sector. The questionnaire measures the level of strategic vigilance and the level of strategic drift. The study hypothesizes a statistically significant positive relationship between strategic vigilance and reducing strategic drift. Data analysis involves exploratory factor analysis, confirmatory factor analysis, and structural equation modeling. The findings are expected to provide insights into the effectiveness of strategic vigilance in mitigating strategic drift and offer recommendations for enhancing the tourism sector’s resilience and adaptability to accelerated environmental changes.
Copyright © by EnPress Publisher. All rights reserved.