With the wide application of the Internet and smart systems, data centers (DCs) have become a hot spot of global concern. The energy saving for data centers is at the core of the related works. The thermal performance of a data center directly affects its total energy consumption, as cooling consumption accounts for nearly 50% of total energy consumption. Superior power distribution is a reliable method to improve the thermal performance of DCs. Therefore, analyzing the effects of different power distribution on thermal performance is a challenge for DCs. This paper analyzes the thermal performance numerically and experimentally in DCs with different power distribution. First, it uses Fluent simulate the temperature distribution and flow field distribution in the room, taking the cloud computing room as the research object. Then, it summarizes a formula based on the computing power distribution in a certain range by the numerical and experimental analysis. Finally, it calculates an optimal cooling power by analyzing the cooling power distribution. The results shows that it reduces the maximum temperature difference between the highest temperature of the cabinet from 5-7k to within 1.2k. In addition, the cooling energy consumption is reduced by more than 5%.
This paper explores the role of the agile approach in managing interorganizational relationships in innovation networks. Design/methodology/approach. Relevant literature related to agile team management, network theory, innovation theory and knowledge management was studied. Based on collaboration between different approaches, a conceptual model for agile management of an innovation network was generated. Conceptual modeling was supplemented with graphical notation (diagram) of the main elements of the model. At the stage of testing the conceptual model, the action research method was applied, which provides an opportunity for organizational innovations to be carried out with the participation of researchers. The object of the pilot implementation of the conceptual model is the Bulgarian division of a global non-governmental organization (NGO) dedicated to community service. The organizational innovation applied in the testing of the model is related to improving the communication environment between individual teams (clubs), which are autonomous, but in the conditions of a network can generate projects for common, large-scale initiatives for community service. Findings. The pilot testing of the model shows its applicability, insofar as a traditionally managed structure switches to an agile communication model, in which horizontal connections become more frequent and knowledge between individual participants is transferred more efficiently. The possibility of decentralized decision-making creates the potential for generating numerous new and larger-scale initiatives for the benefit of the final beneficiaries. The participants in the network have also outlined some shortcomings, such as the need for better preliminary preparation when introducing organizational innovations in order to adequately explain and accept them.
Copyright © by EnPress Publisher. All rights reserved.