Disaster Risk Management benefits from innovative techniques including AI and Multi Sensor Fusion. The Firefguard Approach uses such technologies to improve the Wildfire Management works in Saxony, Eastern Germany by supporting standing efforts in Early Warning, Disaster Response and Monitoring. Unmanned Aerial Systems (UAS) play a vital role in providing real-time information via a 5G network to a central information management system that delivers geospatial information to response teams. This study highlights the potential of combining UAS, AI, geospatial solutions and existing data for real-time wildfire monitoring and risk assessment systems.
The integration of medical images is the process of registering and fusing them to obtain a greater amount of diagnostic information. In this work an analysis is performed for the integration of images obtained through computed axial tomography and magnetic resonance imaging, for which a tool was developed in the Matlab program, where the registration is implemented through equivalent features; in addition, the pairs of images are compared by several fusion rules, with a view to identify the best algorithm in which the resulting fused image contains the most information from the original representations.
An investigation is conducted into how radiation affects the non-Newtonian second-grade fluid in double-diffusive convection over a stretching sheet. When fluid is flowing through a porous material, the Lorentz force and viscous dissipation are also taken into account. The flow equations are coupled partial differential equations that can be solved by MATLAB’s built-in bvp4c algorithm after being transformed into ODEs using appropriate similarity transformations. Utilizing graphs and tables, the impact of a flow parameter on a fluid is displayed. On velocity, temperature, and concentration profiles, the effects of the magnetic field, Eckert number, and Schmidt number have been visually represented. Calculate their inaccuracy by comparing the Nusselt number and Sherwood number values to those from earlier investigations.
Lattice Boltzmann models for diffusion equation are generally in Cartesian coordinate system. Very few researchers have attempted to solve diffusion equation in spherical coordinate system. In the lattice Boltzmann based diffusion model in spherical coordinate system extra term, which is due to variation of surface area along radial direction, is modeled as source term. In this study diffusion equation in spherical coordinate system is first converted to diffusion equation which is similar to that in Cartesian coordinate system by using proper variable. The diffusion equation is then solved using standard lattice Boltzmann method. The results obtained for the new variable are again converted to the actual variable. The numerical scheme is verified by comparing the results of the simulation study with analytical solution. A good agreement between the two results is established.
Imaging technology plays a key role in guiding endovascular treatment of aortic aneurysm, especially in the complex thoracoabdominal aorta. The combination of high quality images with a sterile and functional environment in the surgical suite can reduce contrast and radiation exposure for both patient and operator, in addition to better outcomes. This presentation aims to describe the current use of this technique, combining angiotomography and intraoperative cone beam computed tomography, image “fusion” and intravascular ultrasound, to guide procedures and thus improve the intraoperative success rate and reduce the need for reoperation. On the other hand, a procedure is described to create customized 3D templates with the high-definition images of the patient’s arterial anatomy, which serve as specific guides for making fenestrated stents in the operating room. These customized fenestration templates could expand the number of patients with complex aneurysms treated minimally invasively.
Copyright © by EnPress Publisher. All rights reserved.