Diamond-like Nanocomposites (DLN) is a newly member in amorphous carbon (a:C) family. It consists of two or more interpenetrated atomic scale network structures. The amorphous silicon oxide (a:SiO) is incorporated within diamond-like carbon (DLC) matrix i.e. a:CH and both the network is interpenetrated by Si-C bond. Hence, the internal stress of deposited DLN film decreases remarkably compare to DLC. The diamond-like properties have come due to deform tetrahedral carbon with sp3 configuration and high ratio of sp3 to sp2 bond. The DLN has excellent mechanical, electrical, optical and tribological properties. Those properties of DLN could be varied over a wide range by changing deposition parameters, precursor and even post deposition treatment also. The range of properties are: Resistivity 10-4 to 1014 Ωcm, hardness 10–22 GPa, coefficient of friction 0.03-0.2, wear factor 0.2-0.4 10-7mm3/Nm, transmission Vis-far IR, modulus of elasticity 150-200 GPa, residual stress 200-300 Mpa, dielectric constant 3-9 and maximum operating temperature 600°C in oxygen environment and 1200°C in O2 free air. Generally, the PECVD method is used to synthesize the DLN film. The most common procedures used for investigation of structure and composition of DLN films are Raman spectroscopy, Fourier transformed infrared spectroscopy (FTIR), HRTEM, FESEM and X-ray photo electron spectroscopy (XPS). Interest in the coating technology has been expressed by nearly every industrial segment including automotive, aerospace, chemical processing, marine, energy, personal care, office equipment, electronics, biomedical and tool and die or in a single line from data to beer in all segment of life. In this review paper, characterization of diamond-like nanocomposites is discussed and subsequently different application areas are also elaborated.
Objective: This study investigates the efficacy and safety of epidural infiltration with drugs and an oxygen-ozone mixture for treating cervicobrachialgia due to disc-radicular conflict or on a degenerative basis, utilizing both retrospective analysis and direct visualization techniques. Methods: A retrospective study involving 10 patients treated with epidural infiltrations of an oxygen-ozone mixture and cortisone was conducted. The procedures were performed under CT guidance to ensure precise delivery and to monitor the diffusion of the injected substances. Pain levels were assessed using the Numerical Rating Scale (NRS) and treatment efficacy was evaluated based on symptom relief and reduction in NSAID intake. Results: Significant pain reduction was observed post-treatment, with median NRS scores decreasing from 9 (baseline) to 2 (follow-up), and a significant decrease in on-demand NSAID intake. Only one minor complication of a headache was reported. The study also demonstrated the ability of ozone to diffuse through the epidural adipose tissue, potentially enhancing treatment efficacy. Conclusion: The combined use of an oxygen-ozone mixture and cortisone for epidural infiltration is an effective and safe treatment for cervicobrachialgia, offering significant pain relief and minimizing the risk associated with traditional epidural injections. This technique presents a viable non-surgical option for patients suffering from disc-radicular conflict or degenerative conditions.
Copyright © by EnPress Publisher. All rights reserved.