The use of geotechnologies combined with remote sensing has become increasingly essential and important for efficiently and economically understanding land use and land cover in specific regions. The objective of this study was to observe changes in agricultural activities, particularly agriculture/livestock farming, in the North Forest Zone of Pernambuco (Mata Norte), a political-administrative region where sugarcane cultivation has historically been the backbone of the local economy. The region’s sugarcane biomass also contributes to land use and land cover observations through remote sensing techniques applied to digital satellite images, such as those from Landsat-8, which was used in this study. This study was conducted through digital image processing, allowing the calculation of the Normalized Difference Vegetation Index (NDVI), the Soil-Adjusted Vegetation Index (SAVI), and the Leaf Area Index (LAI) to assess vegetation cover dynamics. The results revealed that sugarcane cultivation is the predominant agricultural and vegetation activity in Mata Norte. Livestock farming areas experienced a significant reduction over the observed decade, which, in turn, led to an increase in agricultural and forested areas. The most dynamic spatiotemporal behavior was observed in the expansion and reduction of livestock areas, a more significant change compared to sugarcane areas. Therefore, land use and land cover in this region are more closely tied to sugarcane cultivation than any other agricultural activity.
To achieve sustainable development, detailed planning, control and management of land cover changes that occur naturally or by human caused artificial factors, are essential. Urban managers and planners need a tool that represents them the information accurate, fast and in exact time. In this study, land use changes of 3 periods, 1994-2002, 2002-2009, 2009-2015 and predictions of 2009, 2015 and 2023 were assessed. In this paper, Maximum Likelihood method was used to classify the images, so that after evaluation of accuracy, amount of overall accuracy for images of 2013 was 85.55% and its Kappa coefficient was 80.03%. To predict land use changes, Markov-CA model was used after assessing the accuracy, and the amount of overall accuracy for 2009 was 82.57% and for 2015 was 93.865%. Then web GIS application was designed via map server application and evoked shape files through map file and open layers to browser environment and for design of appearance of website CSS, HTML and JavaScript languages were used. HTML is responsible for creating the foundation and overall structure of webpage but beautifying and layout design on CSS.
Proper understanding of LULC changes is considered an indispensable element for modeling. It is also central for planning and management activities as well as understanding the earth as a system. This study examined LULC changes in the region of the proposed Pwalugu hydropower project using remote sensing (RS) and geographic information systems (GIS) techniques. Data from the United States Geological Survey's Landsat satellite, specifically the Landsat Thematic Mapper (TM), the Enhanced Thematic Mapper (ETM), and the Operational Land Imager (OLI), were used. The Landsat 5 thematic mapper (TM) sensor data was processed for the year 1990; the Landsat 7 SLC data was processed for the year 2000; and the 2020 data was collected from Operation Land Image (OLI). Landsat images were extracted based on the years 1990, 2000, and 2020, which were used to develop three land cover maps. The region of the proposed Pwalugu hydropower project was divided into the following five primary LULC classes: settlements and barren lands; croplands; water bodies; grassland; and other areas. Within the three periods (1990–2000, 2000–2020, and 1990–2020), grassland has increased from 9%, 20%, and 40%, respectively. On the other hand, the change in the remaining four (4) classes varied. The findings suggest that population growth, changes in climate, and deforestation during this thirty-year period have been responsible for the variations in the LULC classes. The variations in the LULC changes could have a significant influence on the hydrological processes in the form of evapotranspiration, interception, and infiltration. This study will therefore assist in establishing patterns and will enable Ghana's resource managers to forecast realistic change scenarios that would be helpful for the management of the proposed Pwalugu hydropower project.
Based on Landsat–7ETM + images of 2007 and 2012 and Landsat–8 images of 2018, this study took Fuyang City, Anhui Province (Yingzhou District, Yingdong District, Yingquan District) as the research object, and made a quantitative analysis of land use/cover change in Fuyang City from 2007 to 2018 with the Environment for Visualizing Images (ENVI) software. According to the data of land use types in three phases, the article analyzes the development trend of various land use types and the main reasons for the changes of land use, which provides a certain basis for the urban planning and environmental construction of Fuyang City. The results show that with the rapid economic development and continuous improvement of the urbanization level in Fuyang City during 11 years, the area of various land types in the study area has changed greatly. The area of construction land area changed by 448.27 km2, with an increase of 543.57%; the area of arable land changed by 597.52 km2, with a decrease of 34.74%; the area of bare land changed by 26.00 km2, with a decrease of 80.68%. The changes were closely related to the rapid economic and social development in the study area. Under the influence of environmental protection policies and environmental awareness, the area of forest land changed by 85.00 km2, with an increase of 97.58%; the water area changed by 84.35 km2, with an increase of 201.39%.
Soil salinization is a difficult challenge for agricultural productivity and environmental sustainability, particularly in arid and semi-arid coastal regions. This study investigates the spatial variability of soil electrical conductivity (EC) and its relationship with key cations and anions (Na+, K+, Ca2+, Mg2+, Cl⁻, CO32⁻, HCO3⁻, SO42⁻) along the southeastern coast of the Caspian Sea in Iran. Using a combination of field-based soil sampling, laboratory analyses, and Landsat 8 spectral data, linear Multiple Linear Regression and Partial Least Squares Regression (MLR, PLSR) and nonlinear Artifician Neural Network and Support Vector Machine (ANN, SVM) modeling approaches were employed to estimate and map soil EC. Results identified Na+ and Cl⁻ as the primary contributors to salinity (r = 0.78 and r = 0.88, respectively), with NaCl salts dominating the region’s soil salinity dynamics. Secondary contributions from Potassium Chloride KCl and Magnesium Chloride MgCl2 were also observed. Coastal landforms such as lagoon relicts and coastal plains exhibited the highest salinity levels, attributed to geomorphic processes and anthropogenic activities. Among the predictive models, the SVM algorithm outperformed others, achieving higher R2 values and lower RMSE (RMSETest = 27.35 and RMSETrain = 24.62, respectively), underscoring its effectiveness in capturing complex soil-environment interactions. This study highlights the utility of digital soil mapping (DSM) for assessing soil salinity and provides actionable insights for sustainable land management, particularly in mitigating salinity and enhancing agricultural practices in vulnerable coastal systems.
Objective: to achieve accurately and rapidly the mapping of agricultural land use and crop distribution at the township scale. Methods: this study, based on specific methods, such as, time-series remote sensing index threshold classification and maximum likelihood, classifies each land use type and extracts crop spatial information, under the guidance of Sentinel-2A remote sensing images, to carry out agricultural land use mapping at township scale. And the mapping concerned will be verified by comparing with an agricultural spatial information map of a 0.5 m resolution, which is based on WorldVieW-2 fused images. Results: (1) the area accuracy of grain and oil crop land, vegetable land, agricultural facilities land and garden land is fairly good, with 92.93%, 98.98%, 95.71% and 95.14% respectively, and within 8% variation from actual area; (2) the spatial information of plot boundary, farmland road network, and canal network produced by OSM road data and historical high-resolution images was overlayed with the classification results of Sentinel-2A multi-spectral image for mapping, which can improve the accuracy of plot boundary information of classification results for the image with 10 m resolution. Conclusions: the use of multi-source information fusion method, agricultural land use and crop distribution space big data produced by Sentinel-2A optical image, can effectively improve the accuracy and timeliness of land use mapping at the township scale, to provide technical reference for the application of remote sensing big data to carry out agricultural landscape analysis at the township scale, optimization and adjustment of agricultural structure, etc.
Copyright © by EnPress Publisher. All rights reserved.