This study evaluated the development and validation of an integrated operational model for the Underground Logistics System (ULS) in South Korea’s metropolitan area, aiming to address challenges in urban logistics and freight transportation by highlighting the potential of innovative logistics systems that utilize underground spaces. This study used conceptual modeling to define the core concepts of ULS and explored the system architecture, including cargo handling, transportation, operations and control systems, as well as the roles of cargo crews and train drivers. The ULS operational scenarios were verified through model simulation, incorporating both logical and temporal analyses. The simulation outcomes affirm the model’s logical coherence and precision, emphasizing ULS’s pivotal role in boosting logistics efficiency. Thus, ULS systems in Korea offer prospects for elevating national competitiveness and spurring urban growth, underscoring the merits of ULS in navigating contemporary urban challenges and championing sustainability.
Recent times have seen significant advancements in AI and NLP technologies, poised to revolutionize logistical decision-making across industries. This study investigates integrating ChatGPT, an advanced AI language model, into strategic, tactical, and operational logistics. Examining its applicability, benefits, and limitations, the study delves into ChatGPT’s capacity for strategic logistics planning, facilitating nuanced decision-making through natural language interactions. At the tactical level, it explores ChatGPT’s role in optimizing route planning and enhancing real-time decision support. The operational aspect scrutinizes ChatGPT’s capabilities in micro-level logistics and emergency response. Ethical implications, encompassing data security and human-AI trust dynamics, are also analyzed. This report furnishes valuable insights for the logistics sector, emphasizing AI’s potential in reshaping decision-making while underscoring the necessity for foresight, evaluation, and ethical considerations in AI integration. In this publication, it is assumed that ChatGPT is not entirely reliable for decision-making in the logistics field: at the strategic level, it can be effectively used for “brainstorming” in preparing decisions, but at the tactical and operational level, the depth of the knowledge is not sufficient to make appropriate decisions. Therefore, the answers provided by ChatGPT to the defined logistic tasks are compared with real logistic solutions. The article highlights ChatGPT’s effectiveness at different levels of logistics and clarifies its potential and limitations in the logistics field.
The rapid development of cities and urbanization in China has forced the growth of new channels for buying agricultural products. The purpose of this research is to examine how Internet of Things (IoT’s) technologies can digitize a traditional fresh food supply chain. Comparative and descriptive analysis methods are used to highlight the major pain points in the traditional supply chains and assess how digital transformation could help. We delve into every part of digital transformation, which includes establishing an information platform based on IoT and developing smart storage options. Our findings revealed that through end-to-end digital integration, supply chain efficiency is improved with shorter lead times and leaner inventories that yield reduced costs as well as fewer losses while ensuring product quality and traceability. In sum, such an approach would enhance sustainability within the fresh food value chain. As such, our article highlights key aspects of transitioning towards a digital environment in this sector for those planning similar ventures.
This study employs logistic regression to investigate determinants influencing active living among elderly individuals, with “Active Living” (1 = Active, 0 = Inactive) as the dependent variable. Analysing data from 500 participants, findings reveal significant associations between active living and variables such as chronic conditions (OR = 0.29, p < 0.001), mental well-being (OR = 1.57, p < 0.001), social support (OR = 5.75, p < 0.001), access to parks/recreational facilities (OR = 2.59, p < 0.001), income levels (OR = 1.82, p = 0.003), cultural attitudes (OR = 2.72, p < 0.001), and self-efficacy (OR = 2.01, p < 0.001). These findings highlight the complex interplay of factors influencing active living among elderly populations. Recommendations include implementing targeted interventions to manage chronic conditions, enhance mental well-being, strengthen social networks, improve access to recreational spaces, provide economic support for fitness activities, promote positive cultural attitudes towards aging, and empower older adults through self-efficacy programs. Such interventions are crucial for promoting healthier aging and fostering sustained engagement in physical activity among older adults.
Copyright © by EnPress Publisher. All rights reserved.