Objective: This study synthesizes current evidence on the role of Artificial Intelligence (AI) and, where relevant, Open Science (OS) practices in enhancing Human Resource Management (HRM) performance. It focuses on recruitment processes, ethical considerations, and employee participation. Methodology: A systematic literature review was conducted in Scopus covering the period 2019–2024, following PRISMA guidelines. The initial search yielded 1486 records. After de-duplication and screening using Rayyan, 66 studies (≈ 4.4%) met the inclusion criteria, which targeted peer-reviewed works addressing AI-supported HR decision-making. A combined content and bibliometric analysis was performed in R (Bibliometrix) to identify thematic patterns and conceptual structures. Results: Analysis revealed four thematic clusters: 1) Implementation and employee participation emphasizing human-in-the-loop approaches and effective change management; 2) ethical challenges including algorithmic bias, transparency gaps, and data privacy risks; 3) data-driven decision-making delivering higher accuracy, fewer errors, and personalized recruitment and performance assessment; 4) operational efficiency enabling faster workflows and reduced administrative workloads. AI tools consistently improved selection quality, while OS practices promoted transparency and knowledge sharing. Implications: The successful adoption of AI in HRM requires employee engagement, strong ethical safeguards, and transparent data governance. Future research should address the long-term cultural, organizational, and well-being impacts of AI integration, as well as its sustainability.
The artificial intelligence (AI)-based architect’s profile’s selection (simply iSelection) uses a polymathic mathematical model and AI-subdomains’ integration for enabling automated and optimized human resources (HR) processes and activities. HR-related processes and activities in the selection, support, problem-solving, and just-in-time evaluation of a transformation manager’s or key team members’ polymathic profile (TPProfile). Where a TPProfile can be a classical business manager, transformation manager, project manager, or an enterprise architect. iSelection-related selection processes use many types of artifacts, like critical success factors (CSF), AI-subdomain’ integration environments, and an enterprise-wide decision-making system (DMS). iSelection focuses on TPProfiles for various kinds of transformation projects, like the case of the transformation of enterprises’ HRs (EHR) processes, activities, and related fields, like enterprise resources planning (ERP) environments, financial systems, human factors (HF) evolution, and AI-subdomains. The iSelection tries to offer a well-defined (or specific) TPProfile, which includes HF’s original-authentic capabilities, education, affinities, and possible polymathical characteristics. Such a profile can also be influenced by educational or training curriculum (ETC), which also takes into account transformation projects’ acquired experiences. Knowing that selected TPProfiles are supported by an internal (or external) transformation framework (TF), which can support standard transformation activities, and solving various types of iSelection’s problems. Enterprise transformation projects (simply projects) face extremely high failure rates (XHFR) of about 95%, which makes EHR selection processes very complex.
This study comprehensively evaluates the system performance by considering the thermodynamic and exergy analysis of hydrogen production by the water electrolysis method. Energy inputs, hydrogen and oxygen production capacities, exergy balance, and losses of the electrolyzer system were examined in detail. In the study, most of the energy losses are due to heat losses and electrochemical conversion processes. It has also been observed that increased electrical input increases the production of hydrogen and oxygen, but after a certain point, the rate of efficiency increase slows down. According to the exergy analysis, it was determined that the largest energy input of the system was electricity, hydrogen stood out as the main product, and oxygen and exergy losses were important factors affecting the system performance. The results, in line with other studies in the literature, show that the integration of advanced materials, low-resistance electrodes, heat recovery systems, and renewable energy is critical to increasing the efficiency of electrolyzer systems and minimizing energy losses. The modeling results reveal that machine learning programs have significant potential to achieve high accuracy in electrolysis performance estimation and process view. This study aims to contribute to the production of growth generation technologies and will shed light on global and technological regional decision-making for sustainable energy policies as it expands.
Brain tumors are a primary factor causing cancer-related deaths globally, and their classification remains a significant research challenge due to the variability in tumor intensity, size, and shape, as well as the similar appearances of different tumor types. Accurate differentiation is further complicated by these factors, making diagnosis difficult even with advanced imaging techniques such as magnetic resonance imaging (MRI). Recent techniques in artificial intelligence (AI), in particular deep learning (DL), have improved the speed and accuracy of medical image analysis, but they still face challenges like overfitting and the need for large annotated datasets. This study addresses these challenges by presenting two approaches for brain tumor classification using MRI images. The first approach involves fine-tuning transfer learning cutting-edge models, including SEResNet, ConvNeXtBase, and ResNet101V2, with global average pooling 2D and dropout layers to minimize overfitting and reduce the need for extensive preprocessing. The second approach leverages the Vision Transformer (ViT), optimized with the AdamW optimizer and extensive data augmentation. Experiments on the BT-Large-4C dataset demonstrate that SEResNet achieves the highest accuracy of 97.96%, surpassing ViT’s 95.4%. These results suggest that fine-tuning and transfer learning models are more effective at addressing the challenges of overfitting and dataset limitations, ultimately outperforming the Vision Transformer and existing state-of-the-art techniques in brain tumor classification.
We studied the role of industry-academic collaboration (IAC) in the enhancement of educational opportunities and outcomes under the digital driven Industry 4.0 using research and development, the patenting of products/knowledge, curriculum development, and artificial intelligence as proxies for IAC. Relevant conceptual, theoretical, and empirical literature were reviewed to provide a background for this research. The investigator used mainly principal (primary) data from a sample of 230 respondents. The primary statistics were acquired through a questionnaire. The statistics were evaluated using the structural equation model (SEM) and Stata version 13.0 as the statistical software. The findings indicate that the direct total effect of Artificial intelligence (Aint) on educational opportunities (EduOp) is substantial (Coef. 0.2519916) and statistically significant (p < 0.05), implying that changes in Aint have a pronounced influence on EduOp. Additionally, considering the indirect effects through intermediate variables, Research and Development (Res_dev) and Product Patenting (Patenting) play crucial roles, exhibiting significant indirect effects on EduOp. Res_dev exhibits a negative indirect effect (Coef = −0.009969, p = 0.000) suggesting that increased research and development may dampen the impact of Aint on EduOp against a priori expectation while Patenting has a positive indirect effect (Coef = 0.146621, p = 0.000), indicating that innovation, as reflected by patenting, amplifies the effect of Aint on EduOp. Notably, Curriculum development (Curr_dev) demonstrates a remarkable positive indirect effect (Coef = 0.8079605, p = 0.000) underscoring the strong role of current development activities in enhancing the influence of Aint on EduOp. The study contributes to knowledge on the effective deployment of artificial intelligence, which has been shown to enhance educational opportunities and outcomes under the digital driven Industry 4.0 in the study area.
Remote sensing technologies have revolutionized forestry analysis by providing valuable information about forest ecosystems on a large scale. This review article explores the latest advancements in remote sensing tools that leverage optical, thermal, RADAR, and LiDAR data, along with state-of-the-art methods of data processing and analysis. We investigate how these tools, combined with artificial intelligence (AI) techniques and cloud-computing facilities, enhance the analytical outreach and offer new insights in the fields of remote sensing and forestry disciplines. The article aims to provide a comprehensive overview of these advancements, discuss their potential applications, and highlight the challenges and future directions. Through this examination, we demonstrate the immense potential of integrating remote sensing and AI to revolutionize forest management and conservation practices.
Copyright © by EnPress Publisher. All rights reserved.