Soil erosion is characterized by the wearing away or loss of the uppermost layer of soil, driven by water, wind, and human activities. This process constitutes a significant environmental issue, with adverse effects on water quality, soil health, and the overall stability of ecosystems across the globe. This study focuses on the Anuppur district of Madhya Pradesh, India, employing the Revised Universal Soil Loss Equation (RUSLE) integrated with Geographic Information System (GIS) tools to estimate and spatially analyze soil erosion and fertility risk. The various factors of the model, like rainfall erosivity (R), soil erodibility (K), slope length and steepness (LS), conservation practices (P), and cover management factor (C), have been computed to measure annual soil loss in the district. Each factor was derived using geospatial datasets, including rainfall records, soil characteristics, a Digital Elevation Model (DEM), land use/land cover (LULC) data, and information on conservation practices. GIS methods are used to map the geographical variation of soil erosion, providing important information on the area's most susceptible to erosion. The outcome of the study reveals that 3371.23 km2, which constitutes 91% of the district's total area, is identified as having mild soil erosion; in contrast, 154 km2, or 4%, is classified as moderate soil erosion, while 92 km2, representing 2.5%, falls under the high soil erosion category. Additionally, 50 km2, or 1.35%, is categorized as very high soil erosion and around 30 km2 of the study area is classified as experiencing severe soil erosion. The analysis further discovers that the annual soil loss in the district varies between 0 and 151 tons per hectare per year. This study indicates that most of the district is classified under low soil erosion; only a tiny fraction of the area is categorized as experiencing high and very high soil erosion. The study provides significant insights into soil erosion for policymakers and human society to bring their attention to the need for sustainable soil conservation practices in the undulating terrain/topography and agriculturally dominated district of Anuppur.
The purpose of this research is to present a bibliometric analysis of the literature on the ways in which the motivations of individual sports consumers impact the creation of sports infrastructure and the creation of sports-related policy. Design/methodology/approach: Based on the PRISMA approach and information gleaned from the Scopus database, 2605 publications were found to be pertinent to the subject. We conducted a literature analysis of trends and patterns using VOSviewer-based knowledge mapping. Findings: Recent years have seen a proliferation of scholarly publications on the topic of individual sports consumption motivation and its influence on policy formulation and infrastructure development. This suggests that interest in this field is expanding. The list of eminent journals, decision-makers, and organizations involved in this issue demonstrates its global influence. The interdisciplinary nature of the subject is reflected in the study’s emphasis on the most widely published authors and key research terminology. Originality/value: This study closes significant knowledge gaps regarding the complex interactions between societal, environmental, and individual factors that affect the motivation to consume sports and how these motivations influence decisions about sports infrastructure and policies. It does this by using bibliometric techniques and the most recent data. The project aims to create a more thorough picture of how public health policy, sports governance, and urban planning are impacted by the motivations behind sports consumption. Policy implications: Policymakers, planners, and sports organizations can use the results to generate more targeted and effective strategies for the development of sports infrastructure and policy formulation. The study highlights how important it is to make well-informed policy decisions and participate in customized involvement in order to improve public welfare and the overall sports consumer experience.
The CO2 heat pump air conditioning system of new energy vehicle is designed, and the vehicle model of CO2 heat pump module and heat management system is established based on KULI simulation. The effects of refrigerant charge, running time and compressor speed on the heat pump air conditioning system is studied, and the energy consumption is compared with the PTC heating system and the CO2 heat pump air conditioning system without waste heat recovery. The results show that the optimal charge for full-service operation is 750 g; increasing the compressor speed can increase the cooling capacity, so that the refrigerant temperature in the passenger compartment and battery inlet can quickly reach the appropriate temperature, but the COP<sub>h</sub>, COP<sub>c</sub> are reduced by 2.5% and 1.8% respectively. By comparing it with PTC heating and CO2 heat pump air conditioning systems without waste heat recovery, it is found that the energy consumption of this system is only for the PTC heating systems 42.5%, without waste heat recovery carbon dioxide heat pump air conditioning system of 86.6%. It greatly saves energy, but also increased the waste heat recovery function, so that the system supply air temperature increased by 26%, improve passenger cabin comfort. This provides a reference for the future experimental research of CO2 heat pump air conditioning and heat management system.
2050 building stock might be buildings that already exist today. A large percentage of these buildings fail today’s energy performance standards. Highly inefficient buildings delay progress toward a zero-carbon-building goal (SDGs 7 and 13) and can lead to investments in renewable energy infrastructure. The study aims to investigate how bioclimatic design strategies enhance energy efficiency in selected orthopaedic hospitals in Nigeria. The study objective includes Identifying the bioclimatic design strategies that improve energy efficiency in orthopaedic hospitals, assessing the energy efficiency requirements in an orthopaedic hospital in Nigeria and analysing the effects of bioclimatic design strategies in enhancing energy efficiency in an orthopaedic hospital in Nigeria. The study engaged a mixed (qualitative and quantitative) research method. The investigators used case study research as a research design and a deductive approach as the research paradigm. The research employed a questionnaire survey for quantitative data while the in-depth Interview (IDI) guide and observation schedule for qualitative data. The findings present a relationship between bioclimatic design strategies and energy conservation practices in an orthopaedic hospital building. Therefore, implementing bioclimatic design strategies might enhance energy efficiency in hospital buildings. The result of the study revealed that bioclimatic hospital designs may cost the same amount to build but can save a great deal on energy costs. Despite the challenges, healthcare designers and owners are finding new ways to integrate bioclimatic design strategies into new healthcare construction to accelerate patient and planet healing.
Urbanization plays a crucial role in facilitating the integration of population growth, industrial development, economic expansion, and energy consumption. In this paper, we aim to examine the relationships between CO2 emissions and various factors including economic growth, urbanization, financial development, and energy consumption within Pakistan’s building sector. The study utilizes annual data spanning from 1990 to 2020. To analyze the cointegration relationship between these variables, we employ the quantile autoregressive distributed lag error correction model (QARDL-ECM). The findings of this research provide evidence supporting the presence of an asymmetric and nonlinear long-term relationship between the variables under investigation. Based on these results, we suggest the implementation of tariffs on nonrenewable energy sources and the formulation of policies that promote sustainable energy practices. By doing so, policymakers and architects can effectively contribute to minimising environmental damage. Overall, this study offers valuable insights that can assist policymakers and architects in making informed decisions to mitigate environmental harm while fostering sustainable development.
Copyright © by EnPress Publisher. All rights reserved.