The rapid expansion of smart cities has led to the widespread deployment of Internet of Things (IoT) devices for real-time data collection and urban optimization. However, these interconnected systems face critical cybersecurity risks, including data tampering, unauthorized access, and privacy breaches. This paper proposes a blockchain-based framework designed to enhance the security, integrity, and resilience of IoT data in smart city environments. Leveraging a private blockchain, the system ensures decentralized, tamper-proof data storage, and transaction verification through digital signatures and a lightweight Proof of Work consensus mechanism. Smart contracts are employed to automate access control and respond to anomalies in real time. A Python-based simulation demonstrates the framework’s effectiveness in securing IoT communications. The system supports rapid transaction validation with minimal latency and enables timely detection of anomalous patterns through integrated machine learning. Evaluations show that the framework maintains consistent performance across diverse smart city components such as transportation, healthcare, and building security. These results highlight the potential of the proposed solution to enable secure, scalable, and real-time IoT ecosystems for modern urban infrastructures.
This study aims to use dialectical thinking to explore the impacts and responses of Artificial Intelligence (AI) empowerment on students’ personalized learning. The effect of AI empowerment on student personalization is dissected through a literature review and empirical cases. The study finds that AI plays a significant role in promoting personalized learning by enhancing students’ learning effectiveness through intelligent recommendation, automated feedback, improving students’ independent learning ability, and optimizing learning paths, however, the wide application of AI also brings problems such as technological dependence, cheating in exams, weakening of critical thinking ability, educational fairness, and data privacy protection to students. The study proposes recommendations to strengthen technology regulation, enhance the synergy between teachers and AI, and optimize the personalized learning model. AI-enabled personalized learning is expected to play a greater role in improving learning efficiency and educational fairness.
The purpose of this study is to investigate the relationship between the use of business intelligence applications in accounting, particularly in invoice handling, and the resultant disruption and technical challenges. Traditionally a manual process, accounting has fundamentally changed with the incorporation of BI technology that automates processes and allows for sophisticated data analysis. This study addresses the lack of understanding about the strategic implications and nuances of implementation. Data was collected from 467 accounting stakeholder surveys and analyzed quantitatively using correlational analysis. Multiple regression was utilized to investigate the effect of BI adoption, technical sophistication on operational and organizational performance enhancements. The results show a weak association between the use of BI tools and operational enhancements, indicating that the time for processing invoices has decreased. Challenges due to information privacy and bias were significant and negative on both operational and organizational performance. This study suggests that a successful implementation of a BI technology requires an integrated plan that focuses on strategic management, organizational learning, and sound policies This paper informs practitioners of how accounting is being transformed in the digital age, motivating accountants and policy makers to better understand accounting as it evolves with technology and for businesses to invest in concomitant advances.
An unprecedented demand for accurate information and action moved the industry toward RegTech where computing, big data, and social and mobile technologies could help achieve the demand. With the introduction and adoption of RegTech, regulatory changes were introduced in some countries. Enhanced regulatory changes to ease the barriers to market entry, data protection, and payment systems were also introduced to ensure a smooth transition into RegTech. However, regulatory changes fell short of comprehensiveness to address all the issues related to RegTech’s operation. This article is an attempt to devise a Privacy Model for RegTech so industries and regulators can protect the interests of various stakeholders. This model comprises four variables, and each variable consists of many items. The four variables are data protection, accountability, transparency, and organizational design. It is expected that the adoption of this Privacy Model will help industries and regulators embrace standards while being innovative in the development and use of RegTech.
In today’s digital education landscape, safeguarding the privacy and security of educational data, particularly the distribution of grades, is paramount. This research presents the “secure grade distribution scheme (SGDS)”, a comprehensive solution designed to address critical aspects of key management, encryption, secure communication, and data privacy. The scheme’s heart lies in its careful key management strategy, offering a structured approach to key generation, rotation, and secure storage. Hardware security modules (HSMs) are central to fortifying encryption keys and ensuring the highest security standards. The advanced encryption standard (AES) is employed to encrypt graded data, guaranteeing the confidentiality and integrity of information during transmission and storage. The scheme integrates the Diffie-Hellman key exchange protocol to establish secure communication, enabling users to securely exchange encryption keys without vulnerability to eavesdropping or interception. Secure communication channels further fortify graded data protection, ensuring data integrity in transit. The research findings underscore the SGDS’s efficacy in achieving the goals of secure grade distribution and data privacy. The scheme provides a holistic approach to safeguarding educational data, ensuring the confidentiality of sensitive information, and protecting against unauthorized access. Future research opportunities may centre on enhancing the scheme’s robustness and scalability in diverse educational settings.
This study investigates the public’s perceptions of digital innovations in pharmacy, with a focus on health informatics and medication management. Despite the rapid development of these technologies, a comprehensive understanding of how various demographics perceive and interact with them is lacking hence, this research aims to bridge this gap by offering insights into public attitudes and the factors influencing the adoption of digital tools in pharmacy practice, as KSA population and healthcare professionals after Covid-19 has observed the significant potential of digital health. A cross-sectional survey involving 1132 participants was conducted, employing SPSS for data analysis to ensure precise and reliable results. The findings indicate general optimism about the potential of digital innovations to enhance healthcare outcomes but concerns about data privacy and usability significantly affect user acceptance. The researchers recommended tailored educational programs and user-centered design to facilitate the adoption of digital pharmacy innovations. Key contributions include the identification of ‘Ease of Use’ and ‘Data Security and Privacy’ as predominant factors in the adoption of digital health tools.
Copyright © by EnPress Publisher. All rights reserved.