To achieve the Paris Agreement’s temperature goal, greenhouse gas emissions should be reduced as soon as, and by as much, as possible. By mid-century, CO2 emissions would need to be cut to zero, and total greenhouse gases would need to be net zero just after mid-century. Achieving carbon neutrality is impossible without carbon dioxide removal from the atmosphere through afforestation/reforestation. It is necessary to ensure carbon storage for a period of 100 years or more. The study focuses on the theoretical feasibility of an integrated climate project involving carbon storage, emissions reduction and sequestration through the systemic implementation of plantation forestry of fast-growing eucalyptus species in Brazil, the production of long-life wood building materials and their deposition. The project defines two performance indicators: a) emission reduction units; and b) financial costs. We identified the baseline scenarios for each stage of the potential climate project and developed different trajectory options for the project scenario. Possible negative environmental and reputational effects as well as leakages outside of the project design were considered. Over 7 years of the plantation life cycle, the total CO2 sequestration is expected to reach 403 tCO2∙ha−1. As a part of the project, we proposed to recycle or deposit for a long term the most part of the unused wood residues that account for 30% of total phytomass. The full project cycle can ensure that up to 95% of the carbon emissions from the grown wood will be sustainably avoided.
By reviewing US state-level panel data on infrastructure spending and on per capita income inequality from 1950 to 2010, this paper sets out to test whether an empirical link exists between infrastructure and inequality. Panel regressions with fixed effects show that an increase in the growth rate of spending on highways and higher education in a given decade correlates negatively with Gini indices at the end of the decade, thus suggesting a causal effect from growth in infrastructure spending to a reduction in inequality through better access to education and opportunities for employment. More significantly, this relationship is more pronounced with inequality at the bottom 40 percent of the income distribution. In addition, infrastructure expenditures on highways are shown to be more effective at reducing inequality. By carrying out a counterfactual experiment, the results show that those US states with a significantly higher bottom Gini coefficient in 2010 had underinvested in infrastructure during the previous decade. From a policy-making perspective, new innovations in finance for infrastructure investments are developed, for the US, other industrially advanced countries and also for developing economies.
The world economy needs a growth-lifting strategy, and infrastructure financing seems to hold the key. Based on the New Structural Economics (Lin, 2010; 2012) we discuss the heterogeneity of capital focusing on the long-term versus short-term orientation (STO). Traditional neoliberalism assumes that capital is homogenous, complete capital account liberalization is “beneficial”. However, previous studies have found evidence of long-term orientation (LTO) in the culture of many Asian economies (Hofstede, 1991). In this exploratory paper, we suggest that the LTO can be considered a special endowment which, under certain circumstances, can be developed into a comparative advantage (CA) in patient capital. If these countries can turn their latent CA into a revealed CA in patient capital, and develop the ability to “package” profitable and non-profitable projects in meaningful ways, they would have a “revealed” competitive advantage in infrastructure financing. The ability to “package” public infrastructure and private services is one of the key institutional factors for success in overseas cooperation.
To analyze the effect of an increase in the quantity or quality of public investment on growth, this paper extends the World Bank’s Long-Term Growth Model (LTGM), by separating the total capital stock into public and private portions, with the former adjusted for its quality. The paper presents the LTGM public capital extension and accompanying freely downloadable Excel-based tool. It also constructs a new infrastructure efficiency index, by combining quality indicators for power, roads, and water as a cardinal measure of the quality of public capital in each country. In the model, public investment generates a larger boost to growth if existing stocks of public capital are low, or if public capital is particularly important in the production function. Through the lens of the model and utilizing newly-collated cross-country data, the paper presents three stylized facts and some related policy implications. First, the measured public capital stock is roughly constant as a share of gross domestic product (GDP) across income groups, which implies that the returns to new public investment, and its effect on growth, are roughly constant across development levels. Second, developing countries are relatively short of private capital, which means that private investment provides the largest boost to growth in low-income countries. Third, low-income countries have the lowest quality of public capital and the lowest efficient public capital stock as a share of GDP. Although this does not affect the returns to public investment, it means that improving the efficiency of public investment has a sizable effect on growth in low-income countries. Quantitatively, a permanent 1 ppt GDP increase in public investment boosts growth by around 0.1–0.2 ppts over the following few years (depending on the parameters), with the effect declining over time.
Copyright © by EnPress Publisher. All rights reserved.