Hazards are the primary cause of occupational accidents, as well as occupational safety and health issues. Therefore, identifying potential hazards is critical to reducing the consequences of accidents. Risk assessment is a widely employed hazard analysis method that mitigates and monitors potential hazards in our everyday lives and occupational environments. Risk assessment and hazard analysis are observing, collecting data, and generating a written report. During this process, safety engineers manually and periodically control, identify, and assess potential hazards and risks. Utilizing a mobile application as a tool might significantly decrease the time and paperwork involved in this process. This paper explains the sequential processes involved in developing a mobile application designed for hazard analysis for safety engineers. This study comprehensively discusses creating and integrating mobile application features for hazard analysis, adhering to the Unified Modeling Language (UML) approach. The mobile application was developed by implementing a 10-step approach. Safety engineers from the region were interviewed to extract the knowledge and opinions of experts regarding the application’s effectiveness, requirements, and features. These interview results are used during the requirement gathering phase of the mobile application design and development. Data collection was facilitated by utilizing voice notes, photos, and videos, enabling users to engage in a more convenient alternative to manual note-taking with this mobile application. The mobile application will automatically generate a report once the safety engineer completes the risk assessment.
The research explores academia and industry experts’ viewpoints regarding the innovative progression of Virtual Reality (VR)-based safety tools customized for technical and vocational education training (TVET) within commercial kitchen contexts. Developing a VR-based safety tools holistic framework is crucial in identifying constructs to mitigate the risks prevalent in commercial kitchens, encompassing physical, chemical, biological, ergonomic, and psychosocial hazards workers encounter. Introducing VR-based safety training represents a proactive strategy to bolster education and training standards, especially given the historically limited attention directed toward workers’ physical and mental well-being in this sector. This study pursues a primary objective: validating a framework for VR-based kitchen safety within TVET’s hospitality programs. In addition to on-site observations, the research conducted semi-structured interviews with 16 participants, including safety training coordinators, food service coordinators, and IT experts. Participants supplemented qualitative insights by completing a 7-Likert scale survey. Utilizing the Fuzzy Delphi technique, seven constructs were delineated. The validation process underscored three pivotal constructs essential for the VR safety framework’s development: VR kitchen design, interactive applications, and hazard identification. These findings significantly affect the hospitality industry’s safety standards and training methodologies within commercial kitchen environments.
Copyright © by EnPress Publisher. All rights reserved.