The main long-term goal of international communities is to achieve sustainable development. This issue is currently highly topical in most European Union (EU) countries due to the ongoing energy crisis. Building Integrated Photovoltaics (BIPV), which can be integrated into the building surface (roof or facade), thereby replacing conventional building materials, contributes significantly to achieving zero net energy buildings. However, fire safety is important when using BIPV as a structural system in buildings, and it is essential that the application of BIPV as building facades and roofs does not adversely affect the safety of the buildings, their occupants, or the responding firefighters. As multifunctional products, BIPV modules must meet fire safety requirements in the field of electrical engineering as well as in the construction industry. In terms of building regulations, the fire safety requirements of the BIPV must comply with national building regulations. Within this article, aspects and fire hazards associated with BIPV system installations will be defined, including proposals for installation and material requirements that can help meet fire safety.
The scientific objective of this study is to demonstrate how a hybrid photovoltaic-grid-generator microsystem responds under transient regime to varying loads and grid disconnection/reconnection. The object of the research was realized by acquiring the electrical magnitudes from the three PV systems (25 kW, 40 kW, and 60 kW) connected to the grid and the consumer (on-grid), during the technological process where the load fluctuated uncontrollably. Similar recordings were also made for the transient regime caused by the grid disconnection, diesel generator activation (450 kVA), its synchronization with PV systems, power supply to receivers, and grid voltage restoration after diesel generator shutdown. Analysis of the data focused on power supply continuity, voltage stability, and frequency variations. Findings indicated that on-grid photovoltaic systems had a 7.9% maximum voltage deviation from the standard value (230 V) and a frequency variation within ±1%. In the transient period caused by the grid disconnection and reconnection, a brief period with supply interruption was noted. This study contributes to the understanding of hybrid system behavior during transient regimes.
Photovoltaic systems have shown significant attention in energy systems due to the recent machine learning approach to addressing photovoltaic technical failures and energy crises. A precise power production analysis is utilized for failure identification and detection. Therefore, detecting faults in photovoltaic systems produces a considerable challenge, as it needs to determine the fault type and location rapidly and economically while ensuring continuous system operation. Thus, applying an effective fault detection system becomes necessary to moderate damages caused by faulty photovoltaic devices and protect the system against possible losses. The contribution of this study is in two folds: firstly, the paper presents several categories of photovoltaic systems faults in literature, including line-to-line, degradation, partial shading effect, open/close circuits and bypass diode faults and explores fault discovery approaches with specific importance on detecting intricate faults earlier unexplored to address this issue; secondly, VOSviewer software is presented to assess and review the utilization of machine learning within the solar photovoltaic system sector. To achieve the aims, 2258 articles retrieved from Scopus, Google Scholar, and ScienceDirect were examined across different machine learning and energy-related keywords from 1990 to the most recent research papers on 14 January 2025. The results emphasise the efficiency of the established methods in attaining fault detection with a high accuracy of over 98%. It is also observed that considering their effortlessness and performance accuracy, artificial neural networks are the most promising technique in finding a central photovoltaic system fault detection. In this regard, an extensive application of machine learning to solar photovoltaic systems could thus clinch a quicker route through sustainable energy production.
Copyright © by EnPress Publisher. All rights reserved.