The Trans Sumatra Toll Road (TSTR) is a mega toll road project with an assignment State-Owned Enterprise (SOE) scheme in Indonesia. In its development, TSTR has several limitations, including funding, low investment feasibility and the un-optimum implementation of land value capture (LVC). This has the impact of delaying the completion of project development, decreasing the performance of toll road developer companies and even causing bankruptcy. LVC is an alternative funding scheme proven successful in other countries such as Hongkong, England and Vietnam. Several transportation projects based on transit-oriented development have successfully achieved profits using the LVC method. With a low project feasibility, the implementation of the Road Plus Property Developer (RPPD) business model is expected to be a solution to improve investment performance in the TSTR project. RPPD is defined as an assignment scheme toll road business model based on LVC implementation. This research aims to develop policies for implementing the RPPD business model on toll road SOE-assigned schemes. The data was collected by in-depth interviews with experts in two stages. The data analysis method used is Soft System Methodology (SSM). This research produces two recommended actions: ratification of the Presidential Regulation regarding the implementation of LVC and institutional transformation of regionally owned business entities in the property sector. It is hoped that implementing the RPPD policy will become a priority in completing the TSTR project.
The proposed research work encompasses implications for infrastructure particularly the cybersecurity as an essential in soft infrastructure, and policy making particularly on secure access management of infrastructure governance. In this study, we introduce a novel parameter focusing on the timestamp duration of password entry, enhancing the algorithm titled EPSBalgorithmv01 with seven parameters. The proposed parameter incorporates an analysis of the historical time spent by users entering their passwords, employing ARIMA for processing. To assess the efficacy of the updated algorithm, we developed a simulator and employed a multi-experimental approach. The evaluation utilized a test dataset comprising 617 authentic records from 111 individuals within a selected company spanning from 2017 to 2022. Our findings reveal significant advancements in EPSBalgorithmv01 compared to its predecessor namely EPSBalgorithmv00. While EPSBalgorithmv00 struggled with a recognition rate of 28.00% and a precision of 71.171, EPSBalgorithmv01 exhibited a recognition rate of 17% with a precision of 82.882%. Despite a decrease in recognition rate, EPSBalgorithmv01 demonstrates a notable improvement of approximately 14% over EPSBalgorithmv00.
The policy to accelerate the design of the Detailed Spatial Plan regulation document (RDTR) is a strategic step to enhance ease of doing business and promote sustainable development in Indonesia. Targeting 2036 RDTR sites nationwide, the initiative relies on various policy interventions and technical approaches. However, as of 8 January 2024, only 399 RDTRs (19.59%) were enacted after four years of implementation. This underperformance suggests the need to examine factors influencing the process, including issues at each stage of the RDTR design business process. While often overlooked due to its perceived irrelevance to the core substance of planning, analyzing the process is crucial to addressing operational and procedural challenges. This research identifies critical issues arising from the preparation to the enactment stage of RDTR regulations and proposes necessary policy changes. Using an explanatory approach, the study employs methods such as Analytic Hierarchy Process (AHP), post-review analysis, stakeholder analysis, business process evaluation, and scenario planning. Results show several impediments, including challenges related to commitment, technical and substantive issues, managerial coordination, policy frameworks, ICT support, and data availability. These findings serve as inputs for the development of business process improvement scenarios and reengineering schemes based on Business Process Management principles.
In Ghana, youth unemployment remains significant challenges, with technical and vocational education and training (TVET) emerging as a potential solution to equip young people with practical skills for the job market. However, the uptake of TVET programmes among Ghanaian youth remains low, particularly among females. This study therefore explores the determinants that influence TVET choices among Ghanaian youth, with the goal of informing policy development to enhance participation in vocational education. Applying an enhanced multinomial logistic regression (MLR) model, this research examines the influence of socio-economic, demographic, and attitudinal factors on career decisions. The enhanced model accounts for class imbalances in the dataset and improves classification accuracy, making it a robust tool for understanding the drivers behind TVET choices. A sample of 1600 Ghanaian youth engaged in vocational careers was used, ensuring diverse representation of the population. Key findings reveal that males are approximately three times more likely to choose TVET programs than females, despite females making up 50.13% of Ghana’s population. Specific determinants influencing TVET choices include financial constraints, parental influence, peer influence, teacher influence, self-motivation, and vocational limitations. In regions with limited vocational options, youth often pursue careers based on availability rather than preference, which highlights a gap in vocational opportunities. Parental and teacher influences were found to play a dominant role in steering youth towards specific careers. The study concludes with recommendations for policymakers, instructors, and stakeholders to increase the accessibility, relevance, and quality of TVET programmes to meet the socio-economic needs of Ghanaian youth.
Over the past twenty years, service organizations have adopted total quality management to enhance their service quality, significantly impacting business performance, customer satisfaction, and profitability. This study delves into policy development of sustainable quality management theory, benefits, and various service components, while reviewing its implementation in services industries and policy innovation. The concept of Sustainable Quality Management 4.0 (SQM 4.0) integrates sustainable management, traditional quality management, and Quality 4.0 principles to optimize resources, reduce environmental impacts, and enhance decision-making through Industry 4.0, IoT, AI, and big data analytics. The findings offer valuable framework and policy insights for managers and practitioners on quality management and service systems, providing an implementation framework for Sustainable Quality Management in the service sector. The paper outlines comprehensive elements and strategies for implementation as a SQM framework for attaining sustainable quality management in the services industry.
Copyright © by EnPress Publisher. All rights reserved.