The hydroclimatological monitoring network in Haiti was inadequate before 2010 due to a lack of meteorological stations and inconsistent data recording. In the aftermath of the January 2010 earthquake, the monitoring network was reconstructed. In light of the prevailing circumstances and the mounting necessity for hydroclimatological data for water resource management at the national level, it is of paramount importance to leverage and optimize the limited available data to the greatest extent possible. The objective of this research is to develop regional equations that facilitate the transfer of climatic data from climatological stations to locations with limited or absent data. Physiographic and climatological characteristics are used to construct the hydrologic information transfer equations for sites with limited or no data. The validity of the regionalization techniques was assessed using cross-validation. The results enable estimation of hydrological events through the specific patterns of behavior of each region of the country, identified in cartography of homogeneous zones.
This study investigates the impact of extreme rainfall events on soil erosion in the downstream Parnaíba River Basin, located in the Brazilian Cerrado. The analysis focused on rainfall erosivity (R factor) and soil erodibility (K factor) as key indicators. The average erosivity in the region was 9051 MJ mm h−1ha−1year−1, with a variation between 7943 and 10,081 MJ mm h−1ha−1year−1, suggesting a high erosive potential, mainly in the rainiest months, from December to April. The soils of the studied area, mainly Ultisols and Chernosols, present high to very high erodibility, with K factor values ranging from 0.025 to 0.050 t h MJ−1 mm−1. Furthermore, fieldwork revealed areas, near highways, with apparently fragile soils, as well as rills and gullies, identified through photographs taken during fieldwork. These locations, due to the combination of high erosivity and susceptible soils, were considered prone to the occurrence of erosion processes, representing an additional risk to local infrastructure. The spatialization of R and K factors, along with field observations, showed that much of the area is at high risk of erosion and landslides, particularly in regions with greater topographic variability and proximity to water bodies. These results provide a basis for the development of mitigation strategies, being important for the effective prevention of landslides.
This study investigated the variability of climate parameters and food crop yields in Nigeria. Data were sourced from secondary sources and analyzed using correlation and multivariate regression. Findings revealed that pineapple was more sensitive to climate variability (76.17%), while maize and groundnut yields were more stable with low sensitivity (0.98 and 1.17%). Yields for crops like pineapple (0.31 kg/ha) were more sensitive to temperature, while maize, beans, groundnut, and vegetable yields were less sensitive to temperature with yields ranging from 0.15 kg/ha, 0.21 kg/ha, 0.18 kg/ha, and 0.12 kg/ha respectively. On the other hand, maize, beans, groundnut, and vegetable yields were more sensitive to rainfall ranging from 0.19kg/ha, 0.15kg/ha, 0.22 kg/ha, and 0.18 kg/ha respectively compared to pineapple yields which decreased with increase rainfall (−0.25 kg/ha). The results further showed that for every degree increase in temperature, maize, pineapple, and beans yields decreased by 0.48, 0.01, and 2.00 units at a 5 % level of significance, while vegetable yield decreased by 0.25 units and an effect was observed. Also, for every unit increase in rainfall, maize, pineapple, groundnut, and vegetable yields decreased by 3815.40, 404.40, 11,398.12, and 2342.32 units respectively at a 5% level, with an observed effect for maize yield. For robustness, these results were confirmed by the generalized additive and the Bayesian linear regression models. This study has been able to quantify the impact of temperature on food crop yields in the African context and employed a novel analytical approach combining the correlation matrix and multivariate linear regression to examine climate-crop yield relationships. The study contributes to the existing body of knowledge on climate-induced risks to food security in Nigeria and provides valuable insights for policymakers, farmers, government, and stakeholders to develop effective strategies to mitigate the impacts of climate change on food crop yields through the integration of climate-smart agricultural practices like agroforestry, conservation agriculture, and drought-tolerant varieties into national agricultural policies and programs and invest in climate information dissemination channels to help consider climate variability in agricultural planning and decision-making, thereby enhancing food security in the country.
Copyright © by EnPress Publisher. All rights reserved.