Employee retention is a critical concern for organizations in today’s dynamic labor market. This paper introduces a novel framework, integrating “absolute potential of the employee” and “risk associated with leaving the employee”, to address this challenge. Findings from the study suggest that this framework can effectively assist organizations in strategizing retention techniques. The research methodology employed an exploratory research design and collected data from 576 employees across various sectors. The results indicate significant implications for organizational risk assessment and employee retention strategies.
The presence of a crisis has consistently been an inherent aspect of the Supply Chain, mostly as a result of the substantial number of stakeholders involved and the intricate dynamics of their relationships. The objective of this study is to assess the potential of Big Data as a tool for planning risk management in Supply Chain crises. Specifically, it focuses on using computational analysis and modeling to quantitatively analyze financial risks. The “Web of Science—Elsevier” database was employed to fulfill the aims of this work by identifying relevant papers for the investigation. The data were inputted into VOS viewer, a software application used to construct and visualize bibliometric networks for subsequent research. Data processing indicates a significant rise in the quantity of publications and citations related to the topic over the past five years. Moreover, the study encompasses a wide variety of crisis types, with the COVID-19 pandemic being the most significant. Nevertheless, the cooperation among institutions is evidently limited. This has limited the theoretical progress of the field and may have contributed to the ambiguity in understanding the research issue.
In today’s fast-moving, disrupted business environment, supply chain risk management is crucial. More critically, Industry 4.0 has conferred competitive advantages on supply chains through the integration of digital technologies into manufacturing and logistics, but it also implies several challenges and opportunities regarding the management of these risks. This paper looks at some ways emerging technologies, especially Artificial Intelligence (AI), help address pressing concerns about the management of risk and sustainability in logistics and supply chains. The study, using a systemic literature review (SLR) backed by a mapping study based on the Scopus database, reveals the main themes and gaps of prior studies. The findings indicate that AI can substantially enhance resilience through early risk identification, optimizing operations, enriching decision-making, and ensuring transparency throughout the value chain. The key message from the study is to bring out what technology contributes to rendering supply chains resilient against today’s uncertainties.
Dredging and reclamation operations are pivotal aspects of coastal engineering and land development. Within these tasks lie potential hazards for personnel operating dredging machinery and working within reclamation zones. Due to the specialized nature of the work environment, which deviates from conventional workplace settings, the risk of workplace accidents is significantly heightened. The aim of this study is to conduct a comprehensive risk analysis of the safety aspects related to dredging and reclamation activities, with the goal of enhancing safety and minimizing the frequency and severity of potential dangers. This research comprises a thorough risk analysis, integrating meticulous hazard identification from sample projects and literature reviews. It involves risk assessment by gathering insights from experts with direct working experience and aims to assess potential risks. The study focuses on defining effective risk management strategies, exemplified through a case study of a nearshore construction project in Thailand. The study identified numerous high and very high-risk factors in the assessment and analysis of occupational safety in dredging and reclamation work. Consequently, a targeted response was implemented to control and mitigate these risks to an acceptable level. The outcome of this study will provide a significant contribution to the advancement of guidelines and best practices for improving the safety of dredging and reclamation operations.
Urban areas are increasingly vulnerable to fire disasters due to high population density, sprawling infrastructure, and often inadequate safety measures. This study aims to analyze the capacity of the DKI Jakarta government in terms of human resource capabilities, asset readiness, and budget planning capabilities. Furthermore, it measures the government’s success as evidenced by the public response to the achievement of firefighter performance. This study uses qualitative analysis with a content analysis approach. Data sources come from annual performance report documents and the content of the DKI Jakarta Fire Department website containing city disaster information. Performance report and website data are analyzed and used as research data to support qualitative analysis. This research shows that command decisions are essential in the organizational structure of the fire brigade. Both laboratory services are carried out optimally as a concrete effort to map fire potential. The laboratory tests the safety and suitability of firefighting equipment. Available budgetary support provides broad operational powers for the fire service. The government’s strength in minimizing or overcoming fire problems has received a positive response from the public. The operational achievements of firefighting continue to be consistent and increase. Ultimately, this research provides scientific insight into disaster mitigation and reducing the fire risk in cities.
Project risk management in the mining industry is necessary to identify, analyze and reduce uncertainty. The engineering features of mining enterprises, by their nature, require improved risk management tools. This article proves the relevance of creating a simulation model of the production process to reduce uncertainty when making investment decisions. The purpose of the study is to develop an algorithm for deciding on the economic feasibility of creating a simulation experiment. At the same time, the features and patterns of the cases for which the simulation experiment was carried out were studied. Criteria for feasibility assessment of the model introduction based on a qualitative parameters became the central idea for algorithm. The relevance of the formulated algorithm was verified by creating a simulation model of a potassium salt deposit with subsequent optimization of the production process parameters. According to the results of the experiment, the damage from the occurrence of a risk situations was estimated as a decrease in conveyor productivity by 32.6%. The proposed methods made it possible to minimize this risk of stops in the conveyor network and assess the lack of income due to the risk occurrences.
Copyright © by EnPress Publisher. All rights reserved.