Twenty-two tomato (Solanum lycopersicum L.) genotypes were examined for correlation and path analysis in the randomized block design under open field conditions. Total fruit yield showed a significant positive correlation with the number of fruits per plant, average fruit weight, lycopene content, and percent seedling survival in the field at both the genotypic and phenotypic levels. A strong correlation between these characters revealed that selection based on these characters would consequently improve the total fruit yield. Path analysis showed that the number of fruits per plant, average fruit weight, percent seedling survival in the nursery, and number of locules per fruit exhibited high positive direct phenotypic effects on total fruit yield, whereas the number of fruits per plant, average fruit weight, percent seedling survival in the field, and pollen viability had very high positive direct genotypic effects. Therefore, to increase the yield, it would be profitable to prioritize these traits in the selection program.
Tomato (Solanum lycopersicon L.) is a highly valued crop in the world, particularly in Nigeria with high nutritional and economic benefits. However, its production in Iwollo, Southeast Nigeria, is constrained by unfavorable weather conditions. To address this, a study was conducted at the Teaching and Research Farm, Department of Horticultural Technology, Enugu State Polytechnic, Iwollo, Southeast Nigeria to evaluate and select the best cultivar for high tunnel production using the Rank Summation Index. Completely Randomized Design with three replications was used, and six high-yielding cultivars, namely Roma VF, BHN-1021, Supremo, Pomodro, Money maker, and Iwollo local, were evaluated. Data were collected on key agronomic characters and analyzed with Analysis of Variance (ANOVA) at a 0.05 level of probability. There were significant differences in the number of leaves per plant, plant height, number of branches per plant, days to fruit maturity, fresh fruit weight, number of harvested fresh fruits per plant, and fresh fruit yield per plant among the cultivars. These characters that showed significant differences were ranked and summed up to obtain the Rank Summation Index (RSI) score. The results revealed that the Supremo cultivar had the lowest and best score (18). This suggests Supremo as the best cultivar for high tunnel tomato production in the study area, based on its superior performance across key agronomic traits.
Tomato powdery mildew, fruit rot, and twig blight are all managed with Deltamethrin. Its residues could still be present in the crops, posing a health risk. The pesticide residue analysis, dissipation rate, and safety assessments were thus examined in green tomatoes. The analytical method for residue analysis was validated according to international standards. Tomato fruits and soil were used to study the dissipation of Deltamethrin 100 EC (11% w/w) at 12.5 g a.i ha−1 for the recommended dose (RD) and 25.0 g a.i ha−1 for the double of the recommended dose (DD). Ethyl acetate was used to extract residues from tomato fruit, and PSA and magnesium sulphate were used for cleanup.The fruits had recoveries ranging from 83% to 93% and the soil sample from 81.67% to 89.6%, with the limit of detection (LOQ) estimated at 0.01 mg kg−1. The matrix effect (ME) was calculated to be less than 20% for the tomato fruits and the soil.Half-lives for RD and DD were 1.95 and 1.84 days, respectively. All sampling days for both doses had dietary exposures of residues below the maximum permissible intake (MPI) of 0.16 mg person−1 day−1. The most effective method of decontaminating tomato residue containing Deltamethrin is blanching.
Tomato is one of the major solanaceous vegetables, which has a unique place in the global vegetable market. Instead of being a high-value crop, there is still a need to do improvement in its potential against various biotic and abiotic stressors that adequately demolish its real yield. Alternaria solani (causing early blight disease) is designated as one of the fatal organisms that may reduce tomato crop yield by up to 80%. There were lots of methods, viz., chemical, cultural and biological suggested to overcome it. However, chemical strategies are much in vogue, but they have several negative consequences for human health and the ecosystem. Enlightening this issue, the efficacy of various treatments, viz., chemical fungicides (Amistar Top®, Nativo®, and Contaf®), biochar and fungal bioagent (Trichoderma viride) was assessed under both in vivo and in vitro conditions. Induced resistance is mediated by several regulating pathways, like salicylic acid and jasmonic acid. These mediating pathways manipulate different physiological processes like growth and development, stress tolerance, and defence mechanisms of the plant. The assessment of results revealed that among all treatments biochar at 3.25% by weight consistently displayed remarkable effectiveness against the early blight infection by triggering resistance and improving the overall performance of tomato plants. This result is attributed to improved soil health, fastening mineralization as well as absorption processes, and boosting the plant’s immunity with the use of a higher concentration of biochar. Hence, it could be recommended for the overall improvement of tomato crop and its sustainability.
Deficiencies in postharvest technology and the attack of phytopathogens cause horticultural products, such as tomatoes to have a very short shelf life. In addition to the economic damage, this can also have negative effects on health and the environment. The objective of this work is to evaluate an active coating of sodium alginate in combination with eugenol-loaded polymeric nanocapsules (AL-NP-EUG) to improve the shelf life of tomato. Using the nanoprecipitation technique, NPs with a size of 171 nm, a polydispersity index of 0.113 and a zeta potential of −2.47 mV were obtained. Using the HS-SPME technique with GC-FID, an encapsulation efficiency percentage of 31.85% was determined for EUG. The shelf-life study showed that the AL-NP-EUG-treated tomatoes maintained firmness longer than those without the coating. In addition, the pathogenicity test showed that tomatoes with AL-NP-EUG showed no signs of damage caused by the phytopathogen Colletotrichum gloesporoides. It was concluded that the formulation of EUG nanoencapsulated and incorporated into the edible coating presents high potential for its application as a natural nanoconservative of fruit and vegetable products such as tomato.
Copyright © by EnPress Publisher. All rights reserved.