This study examines the spatial distribution and structure of traffic offences in the Northern Great Plain region. The research is unique in that it examines a specific area through the lens of geography. The research shows and demonstrates that the research area of crime and transport geography is much broader than previous researches has shown. At the beginning of the study, the authors clarified the conceptual framework, as the terms “violation” and “offence” are often confused even in technical materials. The research shows which routes are the most frequently used by road hauliers in the regions under study and what type of checks have been carried out on these routes by the Transport Authorities of the Government Offices. The type of administrative penalty detected and the nationality breakdown of the infringements are described. The study typifies the infringements involving administrative fines by nationality category.
Due to the short cost-effective heat transportation distance, the existing geothermal heating technologies cannot be used to develop deep hydrothermal-type geothermal fields situated far away from urban areas. To solve the problem, a new multi-energy source coupling a low-temperature sustainable central heating system with a multifunctional relay energy station is put forward. As for the proposed central heating system, a compression heat pump integrated with a heat exchanger in the heating substation and a gas-fired water/lithium bromide single-effect absorption heat pump in the multifunctional relay energy station are used to lower the return temperature of the primary network step by step. The proposed central heating system is analyzed using thermodynamics and economics, and matching relationships between the design temperature of the return water and the main line length of the primary network are discussed. The studied results indicate that, as for the proposed central heating system, the cost-effective main line length of the primary network can approach 33.8 km, and the optimal design return temperature of the primary network is 23 ℃. Besides, the annual coefficient of performance and annual energy efficiency of the proposed central heating system are about 3.01 and 42.7%, respectively.
Considering the need to adopt more sustainable agricultural systems, it is important that sweet potato breeding programs seek to increase not only root productivity, but also the productivity and quality of branches for silage production. The objective was to evaluate the genetic divergence and the importance of traits associated with the production and quality of branch silage in sweet potato genotypes. The experiment was conducted on the JK Campus of the Federal University of Vales do Jequitinhonha and Mucuri Valleys in a randomized block design with 12 treatments and four repetitions. Twelve characteristics of branches and silage were evaluated. There was genetic variability between the genotypes, making it possible to select parents divergent for future breeding programs for silage production. The genotypes BD-54 and BD-31TO were the most divergent in relation to the others, being indicated its use in crossbreeding aiming the improvement of the culture for silage, once the high performance per se of all genotypes evaluated has already been verified in previous works. The characteristics Na, TDN and NDF were those that most contributed to the divergence.
Using the rank scale rule, taking 47 major port cities in China from 2001 to 2015 as research samples, this paper discusses the rank scale characteristics and hierarchical structure of coastal port city system from a multi-functional perspective, and divides the coupling type of multi-functional development based on shipping logistics. The research shows that: 1) from 2001 to 2015, the scale-free area of manufacturing function order scale distribution in the coastal port city system appeared bifractal structure, the hierarchical segmentation characteristics appeared, and the other functions were single fractal; From the perspective of long-term evolution, only the order and scale distribution of shipping logistics function has developed from centralization to equilibrium, while the business function, manufacturing function (scale-free region I), modern service function and population distribution function are in a centralized situation. 2) The hierarchical structure of coastal port city system has gradually changed from pyramid structure to spindle structure, and generally formed five levels: national hub, regional hub, regional sub center, regional node and local node. 3) From the perspective of multi-functional coupling types, the traditional functions of port cities are generally ahead, while the high-end service functions lag behind, and the improvement speed of urban functions is slow and tends to be flat, indicating that the multi-functional development of China’s coastal port cities is still at a low level, and the industrial system structure needs to be further optimized. 4) From the perspective of port cities at different levels, the functions of regional hub cities and regional sub central cities are in the stage of rapid growth; regional and local node cities are still in the growth stage of traditional functions such as industry and commerce.
This paper is devoted to the discussion of dynamical properties of anisotropic dark energy cosmological model of the universe in a Bianchi type-V space time in the framework of scale covariant theory of gravitation formulated by Canuto et al.(phys.Rev.Lett.39:429,1977).A dark energy cosmological model is presented by solving the field equations of this theory by using some physically viable conditions. The dynamics of the model is studied by computing the cosmological parameters, dark energy density, equation of state(EoS) parameter, skewness parameters, deceleration parameter and the jerk parameter. This being a scalar field model gives us the quintessence model of the universe which describes a significant dark energy candidate of our accelerating universe. All the physical quantities discussed are in agreement with the recent cosmological observations.
Global warming is a thermodynamic problem. When excess heat is added to the climate system, the land warms more quickly than the oceans due to the land’s reduced heat capacity. The oceans have a greater heat capacity because of their higher specific heat and the heat mixing in the upper layer of the ocean. Thermodynamic Geoengineering (TG) is a global cooling method that, when deployed at scale, would generate 1.6 times the world’s current supply of primary energy and remove carbon dioxide (CO2) from the atmosphere. The cooling would mirror the ostensible 2008–2013 global warming hiatus. At scale, 31,000 1-gigawatt (GW) ocean thermal energy conversion (OTEC) plants are estimated to be able to: a) displace about 0.8 watts per square meter (W/m2) of average global surface heat from the surface of the ocean to deep water that could be recycled in 226-year cycles, b) produce 31 terawatts (TW) (relative to 2019 global use of 19.2 TW); c) absorb about 4.3 Gt CO2 per year from the atmosphere by cooling the surface. The estimated cost of these plants is $2.1 trillion per year, or 30 years to ramp up to 31,000 plants, which are replaced as needed thereafter. For example, the cost of world oil consumption in 2019 was $2.3 trillion for 11.6 TW. The cost of the energy generated is estimated at $0.008/KWh.
Copyright © by EnPress Publisher. All rights reserved.