This study evaluated the development and validation of an integrated operational model for the Underground Logistics System (ULS) in South Korea’s metropolitan area, aiming to address challenges in urban logistics and freight transportation by highlighting the potential of innovative logistics systems that utilize underground spaces. This study used conceptual modeling to define the core concepts of ULS and explored the system architecture, including cargo handling, transportation, operations and control systems, as well as the roles of cargo crews and train drivers. The ULS operational scenarios were verified through model simulation, incorporating both logical and temporal analyses. The simulation outcomes affirm the model’s logical coherence and precision, emphasizing ULS’s pivotal role in boosting logistics efficiency. Thus, ULS systems in Korea offer prospects for elevating national competitiveness and spurring urban growth, underscoring the merits of ULS in navigating contemporary urban challenges and championing sustainability.
The freight transport chain brings together several types of players, particularly upstream and downstream players, where it is connected to both nodal and linear logistics infrastructures. The territorial anchoring of the latter depends on a good level of collaboration between the various players. In addition to the flow of goods from various localities in the area, the Autonomous Port of Lomé generates major flows to and through the port city of Lomé, which raises questions about the sustainability of these various flows, which share the road with passenger transport flows. The aim of this study is to analyse the challenges associated with the sustainability of goods flows. The methodology is based on direct observations of incoming and outgoing flows in the Greater Lomé Autonomous District (DAGL) and semi-directive interviews with the main players in urban transport and logistics. The results show that the three main challenges to the sustainability of goods transport are congestion (28%), road deterioration (22%) and lack of parking space (18%).
Copyright © by EnPress Publisher. All rights reserved.