The silver nanoparticles (AgNPs) exhibit unique and tunable plasmonic properties. The size and shape of these particles can manipulate their localized surface plasmon resonance (LSPR) property and their response to the local environment. The LSPR property of nanoparticles is exploited by their optical, chemical, and biological sensing. This is an interdisciplinary area that involves chemistry, biology, and materials science. In this paper, a polymer system is used with the optimization technique of blending two polymers. The two polymer composites polystyrene/poly (4-vinylpyridine) (PS/P4VP) (50:50) and (75:25) were used as found suitable by their previous morphological studies. The results of 50, 95, and 50, 150 nm thicknesses of silver nanoparticles deposited on PS/P4VP (50:50) and (75:25) were explored to observe their optical sensitivity. The nature of the polymer composite embedded with silver nanoparticles affects the size of the nanoparticle and its distribution in the matrix. The polymer composites used are found to have a uniform distribution of nanoparticles of various sizes. The optical properties of Ag nanoparticles embedded in suitable polymer composites for the development of the latest plasmonic applications, owing to their unique properties, were explored. The sensing capability of a particular polymer composite is found to depend on the size of the nanoparticle embedded in it. The optimum result has been found for silver nanoparticles of 150 nm thickness deposited on PS/P4VP (75:25).
The boom in nanotechnology over the last three decades is undeniable. Responsible for this interest in nanomaterials are mainly the nanostructured forms of carbon, since historically they were the ones that inaugurated the study of nanomaterials with the discovery of fullerenes in 1985 and carbon nanotubes in 1991. Although a variety of techniques exist to produce these materials, chemical vapor deposition (CVD) is particularly valuable as it allows the production of a wide variety of carbon nanostructures, is versatile, scalable, easy to implement and relatively low cost. This review article highlights the importance of CVD and details its principles, operating conditions and parameters, as well as its main variants. A description of the technique used to produce fullerenes, nano-ceramics, carbon nanotubes, nanospheres, graphene and others is made, emphasizing the specific parameters for each synthesis.
Copyright © by EnPress Publisher. All rights reserved.