One crucial metric for estimating a reservoirs and dam’s lifespan is sedimentation. It is dependent upon sediment output, which in turn is dependent upon soil erosion. The study area, the Aguat Wuha Dam, was located in Simada woreda, of northwestern parts of Ethiopia. And the study's goal was to use Arc GIS and RUSLE adjusted to Ethiopian conditions to assess potential soil erosion and sediment output from the watershed and identify hotspot locations for appropriate planning for erosion and sedimentation problem management techniques to make the outputs of the dam project more productive and effective for the proposed and suggested purpose of the dam. To predict the geographical patterns of soil erosion in the watershed, the Geographic Information System (GIS) was combined with the revised universal soil loss equation (RUSLE). A soil erosion map was produced using ArcGIS by utilizing all of the model's parameters, including Erosivity, erodibility, steepness, land use, land cover, and supportive practice factors. The watershed's yearly soil loss varies from 0 to 413.86 tons/ha. In order to determine the erosion hotspot area, the average annual soil loss value was discovered to be 9.24 tons/ha/year and was categorized into six erosion severity classes: low, moderate, high, very high, severe, and very severe. These findings indicated that 162.57 ha and 699.17 ha of the watershed were considered to be extremely and severely vulnerable to soil erosion, respectively. It was discovered that the anticipated sediment yield supplied to the outlet varied from 0 to 104.94 tons/ha/year. By standing from the implications of the assessments of the geological, geotechnical, topographical, and socioenvironmental considerations Watershed management is the most effective way to reduce the amount of sediment produced and the amount that enters the reservoir among the several reservoir sedimentation control options that are available.
By carrying out a laboratory experiment, the influence of priming methods, including ZnSO4, BSN, and hydropriming was evaluated on the seed germination of hybrid AS71 corn. Then, the main and interaction effects of the priming methods, planting dates, and weed interference levels were surveyed on the vegetative growth traits, yield, and yield components of corn in a field experiment. Based on the lab experiment, although the maximum germination percentage (100%) was observed in the treated plots by hydropriming 22 h after treatment (HAT), the greatest seedling vigor index (122.99) was recorded with treated seeds by ZnSO4 (0.03 mg L–1) at 8 HAT. The greatest emergence index was observed in the treated plots by hydropriming on both planting dates of June 1 and 11. The interaction of planting dates and weed interference levels revealed that the highest emergence index (14%–17%) occurred in the weed-free plots on both planting dates. BSN recorded the greatest corn 1000-grain weight that was significantly higher than the control plots by 28%. Furthermore, BSN enhanced the corn grain yield compared with the control plots by 63% and 24.9% on the planting dates of June 1 and 11, respectively. BSN, as a nutri-priming approach, by displaying the highest positive effects in boosting the corn grain yield in both weedy and weed-free plots as well as both planting dates, could be a recommendable option for growers to improve the crop yield production.
An experiment was conducted to assess the effect of psychoenergetic energy in litchi as positive and negative thoughts using a simple meditation technique at ICAR-NRC on Litchi, Muzaffarpur. The plant produced 24.75 g of fruit given positive energy, while the plant with negative thought energy produced 22.12 g of fruit. The fruit and seed weight increased by 11.88% and 13.63%, respectively, due to positive energy. The number of fruit retentions increased by 23.77% due to positive energy. Anthocyanin content in pericarp was increased by 5.45% in plants given positive energy. Fruit qualities were also significantly affected by psychoenergy. TSS (Brix) was significantly increased by 13.54% in plants given positive energy as compared to negative energy, and titratable acidity was reduced by 25% due to positive energy. Ascorbic acid was also increased by 30% in plant given positive thoughts. Sun burn was reduced by 54.76% and fruit cracking by 63.64% due to energy of thought. Fruit borer infestation was reduced by 70%, and mite infestation was reduced by 90% in plants given positive energy. The psychoenergetic potential is vast, and its ability to improve crop yield and quality cannot be overstated. The hidden power of thought is being practiced by all, but mostly people do not know this power and use it in an improper manner. This is a high time when we need to practice generating powerful thoughts to change present-day agriculture and its dependents.
Twenty-two tomato (Solanum lycopersicum L.) genotypes were examined for correlation and path analysis in the randomized block design under open field conditions. Total fruit yield showed a significant positive correlation with the number of fruits per plant, average fruit weight, lycopene content, and percent seedling survival in the field at both the genotypic and phenotypic levels. A strong correlation between these characters revealed that selection based on these characters would consequently improve the total fruit yield. Path analysis showed that the number of fruits per plant, average fruit weight, percent seedling survival in the nursery, and number of locules per fruit exhibited high positive direct phenotypic effects on total fruit yield, whereas the number of fruits per plant, average fruit weight, percent seedling survival in the field, and pollen viability had very high positive direct genotypic effects. Therefore, to increase the yield, it would be profitable to prioritize these traits in the selection program.
An experiment was carried out to investigate the effect of different organic nutrient solutions and day of harvest on growth parameters, biomass and chemical composition of hydroponically grown sorghum red fodder. The experiment was a 3 × 2 factorial design comprising of 3 nutrient solutions (cattle, poultry and rabbit) and 2 harvesting regimes (8th and 10th day). Cattle, poultry and rabbit dungs were collected fresh and processed into nutrient solutions. Sorghum red seeds were treated, planted on trays, and irrigated twice per day with organic nutrient solution according to the treatments. Growth parameters which were investigated included fodder mat thickness, seedling height, leaf length and width, number of leaves, fresh and dry matter yield; and proximate composition. The results showed that sorghum red fodder irrigated with cattle manure nutrient solution (NS) harvested at 10 days was higher in all, except one (fodder mat thickness) of the growth parameters considered. The crude protein (CP) was highest and similar (P > 0.05) for Poultry NS harvested at 8 and 10 days, and Cattle NS at 10 days (13.13%, 12.67%, and 12.69% respectively). The ash content also favored Cattle NS at 10 days. Cattle NS at 10 days harvest was significantly (P < 0.05) the highest (7.00%), but comparable (P > 0.05) with Rabbit NS at 10 days for NDF. Fresh and DM yields were highest for Cattle harvested at 10 and 8 days respectively. The study recommends Cattle NS as hydroponic organic NS for sorghum red as it enhances fresh and dry matter yields, and nutritive values.
Nothofagus pumilio forests constitute the most economically important forest stand in southern Argentina and Chile. Total volume stocking and volumetric yield vary according to site quality, degree of occupation, growth stage and forest history of the stand. The objective of this work was to evaluate the stocking and the productive potential in quantity and quality of products for the sawmilling industry, using three harvesting systems (short logs, long logs and complete shafts) in the protection cut of a N. pumilio forest of site quality III in Tierra del Fuego (Argentina). The trials were conducted in an irregular mature forest with two strata and abundant regeneration (3.0 ha; RDI 93.8–113.4%). Total volumes varied between 726.5 and 850.3 m3∙ha-1, with a volume/basal area ratio of 11.8 to 12.1 m3∙m-2. The harvesting rates obtained were: 45.5% for complete logs, 21.3% for long logs and 22.4% for short logs. A model was used to estimate the timber volume for each system, where full shafts resulted in a significant increase in timber volume. Considering new alternatives in the planning of harvesting in forest management for N. pumilio forests, such as the system of complete shafts, allows obtaining higher harvesting rates, increasing the benefits for the forestry company and minimizing the damage to the forest, due to the shorter distance of the machinery in the forest harvesting.
Copyright © by EnPress Publisher. All rights reserved.