Research networks organized around a particular topic are built as knowledge is produced and socialized. These are parts of a seminal or initial production, to which new authors and subtopics are added until research and knowledge networks are formed around a particular area. The purpose of the research was to find this type of relationship or network between authors, institutions, and countries that have contributed to the issue of the circular economy and specifically its relationship with sustainability. This allows those interested in the said object of study to know the research advances of the network, enter their research lines, or create new networks according to their interests or needs. The study used a bibliometric-type descriptive quantitative approach using the Scopus scientific database, the R Studio data analytics application, and the Bibliometrix library. The results were found to determine a relationship building from 2006, which makes it an emerging topic. However, the growth it has achieved in recent years of more than 31% shows a strong interest in the subject. Of the subtopics that have been addressed, sustainability, recycling, solid waste, wastewater, and renewable energy. Similarly, sectors such as construction, the automotive industry, tourism, cities, the agricultural sector, the chemical industry, and the implementation of technologies 4.0 and 5.0 in their processes stood out. The most prominent country in the scientific approach to this area is Italy. The most prominent author for his citations is Molina-Moreno, the source of knowledge that stands out for his contributions is the University of Granada and different networks have been built around their knowledge.
The achievement of sustainable development in Kenya has been hindered by the prevalence of HIV. The effects of HIV on sustainable development have been given less academic attention. HIV prevalence prevents people from achieving good health and well-being, which then makes them unable to conduct activities that lead to sustainable economic growth. The paper found that the prevalence of HIV causes economic hardship, destroys human capital development and human resources by reducing life expectancy and increasing mortality rates. It was equally found that the prevalence of HIV undermines social stability and mobility, reduces economic investments, influences food insecurity and makes people vulnerable. The paper found that the prevalence of HIV reduces labor supply and productivity, increases the cost of health services, promote inequality and poverty. The paper found that the prevalence of HIV was caused by the failure to integrate religion, culture and science infrastructure to achieve a holistic treatment acceptance and adherence that would overcome all misconceptions people have towards the disease. The paper found that while science provides effective HIV treatments, religious and cultural perspectives often shape community attitudes toward the disease. It was found that engaging religious and cultural as well as health workers or health advocates can help reduce stigma and promote ART adherence by aligning treatment messages with faith-based principles. The paper found that the integration that incorporates religion, culture, and science into HIV interventions would promote a more inclusive healthcare system that respects diverse beliefs while ensuring evidence-based treatment is accessible and widely accepted. The study was conducted through a qualitative methodology. Data was collected from secondary sources that included published articles, books and occasional papers as well as reports. Collected data was interpreted and analyzed through document analysis techniques.
The fast-growing field of nanotheranostics is revolutionizing cancer treatment by allowing for precise diagnosis and targeted therapy at the cellular and molecular levels. These nanoscale platforms provide considerable benefits in oncology, including improved disease and therapy specificity, lower systemic toxicity, and real-time monitoring of therapeutic outcomes. However, nanoparticles' complicated interactions with biological systems, notably the immune system, present significant obstacles for clinical translation. While certain nanoparticles can elicit favorable anti-tumor immune responses, others cause immunotoxicity, including complement activation-related pseudoallergy (CARPA), cytokine storms, chronic inflammation, and organ damage. Traditional toxicity evaluation approaches are frequently time-consuming, expensive, and insufficient to capture these intricate nanoparticle-biological interactions. Artificial intelligence (AI) and machine learning (ML) have emerged as transformational solutions to these problems. This paper summarizes current achievements in nanotheranostics for cancer, delves into the causes of nanoparticle-induced immunotoxicity, and demonstrates how AI/ML may help anticipate and create safer nanoparticles. Integrating AI/ML with modern computational approaches allows for the detection of potentially dangerous nanoparticle qualities, guides the optimization of physicochemical features, and speeds up the development of immune-compatible nanotheranostics suited to individual patients. The combination of nanotechnology with AI/ML has the potential to completely realize the therapeutic promise of nanotheranostics while assuring patient safety in the age of precision medicine.
The sense of belonging in any organization is vital to generate a work motivation with the objective of a good organizational performance, because of this, companies usually take this point into account, ensuring that this leads to greater performance. For this reason, the objective of this article is to determine the relationship between the sense of belonging and the work motivation in the workers of a small Peruvian research company. For this purpose, a quantitative methodology was used, with a cross-sectional descriptive design. The instrument used was a survey consisting of 10 items, which were interpreted using the Likert scale. The survey was conducted and delivered to 24 workers, who were selected by non-probabilistic convenience sampling. After verifying the validity of the instrument and the study variables by means of Cronbach's Alpha statistic, we proceeded to determine the existence of correlation between the variables, which, using Spearman's Rho coefficient, obtained a 70.2% which demonstrates a moderate positive correlation, therefore it indicates that employees feel highly motivated as they feel an indispensable part of the company, therefore they feel job satisfaction by being part of the organization.
The expanding adoption of artificial intelligence systems across high-impact sectors has catalyzed concerns regarding inherent biases and discrimination, leading to calls for greater transparency and accountability. Algorithm auditing has emerged as a pivotal method to assess fairness and mitigate risks in applied machine learning models. This systematic literature review comprehensively analyzes contemporary techniques for auditing the biases of black-box AI systems beyond traditional software testing approaches. An extensive search across technology, law, and social sciences publications identified 22 recent studies exemplifying innovations in quantitative benchmarking, model inspections, adversarial evaluations, and participatory engagements situated in applied contexts like clinical predictions, lending decisions, and employment screenings. A rigorous analytical lens spotlighted considerable limitations in current approaches, including predominant technical orientations divorced from lived realities, lack of transparent value deliberations, overwhelming reliance on one-shot assessments, scarce participation of affected communities, and limited corrective actions instituted in response to audits. At the same time, directions like subsidiarity analyses, human-cent
Copyright © by EnPress Publisher. All rights reserved.