Phytochemical and antioxidant analysis of some varieties of Capsicum was evaluated. Mature Capsicum varieties were collected across the State. The seeds were removed, sun-dried for 3 days, stored for 2 weeks at 15 ºC–25 ºC in polythene bags before planting. Saponins, tannins, flavonoids, alkaloids and cardiac glycosides were present in abundant, moderate and trace amounts. Combined anthraquinones were absent in all varieties. Yellow (0.810 ± 0.0006 µg/mL), red long dry (0.211 ± 0.0006 µg/mL) and round peppers (2.527 ± 0.0003 µg/mL) had the largest values for total phenol, flavonoids and tannins. Shombo and yellow peppers had the largest (0.270 ± 0.002 µg/mL) and least (0.102 ± 0.001 µg/mL) capsaicin content. The antioxidant activities varied across the varieties. At 100 µg/mL of methanol, yellow (45%) and round peppers (45%) had largest mean absorbances for 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Activity while sub-shombo pepper (23%) had the least. For Ferric Reducing Antioxidant Power (FRAP), yellow (0.63 ± 0.001 µg/mL) and sub-shombo peppers (0.55 ± 0.001µg/mL) had the largest and least values at 100 µg/mL of methanol. At 100 µg/mL of methanol, red long dry (0.112 ± 0.001) and shombo peppers (0.101 ± 0.001) had the largest and least values for the nitric oxide scavenging activity. This study shows that Capsicum varieties exhibit bioactive componds similarities and variations with implications in hybridization, taxonomy and conservation.
Paraffin wax is the most common phase change material (PCM) that has been broadly studied, leading to a reliable optimal for thermal energy storage in solar energy applications. The main advantages of paraffin are its high latent heat of fusion and low melting point that appropriate solar thermal energy application. In addition to its accessibility, ease of use, and ability to be stored at room temperature for extended periods of time, Nevertheless, improving its low thermal conductivity is still a big, noticeable challenge in recently published work. In this work, the effect of adding nano-Cu2O, nano-Al2O3 and hybrid nano-Cu2O-Al2O3 (1:1) at different mass concentrations (1, 3, and 5 wt%) on the thermal characteristics of paraffin wax is investigated. The measured results showed that the peak values of thermal conductivity and diffusivity are achieved at a wight concentration of 3% when nano-Cu2O and nano-Al2O3 are added to paraffin wax with significant superiority for nano-Cu2O. While both of those thermal properties are negatively affected by increasing the concentration beyond this value. The results also showed the excellence of the proposed hybrid nanoparticles compared to nano-Cu2O and nano-Al2O3 as they achieve the highest values of thermal conductivity and diffusivity at a weight concentration of 5.0 wt%.
The current manuscript overviews the potential of inimitable zero dimensional carbon nanoentities, i.e., nanodiamonds, in the form of hybrid nanostructures with allied nanocarbons such as graphene and carbon nanotube. Accordingly, two major categories of hybrid nanodiamond nanoadditives have been examined for nanocompositing, including nanodiamond-graphene or nanodiamond/graphene oxide and nanodiamond/carbon nanotubes. These exceptional nanodiamond derived bifunctional nanocarbon nanostructures depicted valuable structural and physical attributes (morphology, electrical, mechanical, thermal, etc.) owing to the combination of intrinsic features of nanodiamonds with other nanocarbons. Consequently, as per literature reported so far, noteworthy multifunctional hybrid nanodiamond-graphene, nanodiamond/graphene oxide, and nanodiamond/carbon nanotube nanoadditives have been argued for characteristics and potential advantages. Particularly, these nanodiamond derived hybrid nanoparticles based nanomaterials seem deployable in the fields of electromagnetic radiation shielding, electronic devices like field effect transistors, energy storing maneuvers namely supercapacitors, and biomedical utilizations for wound healing, tissue engineering, biosensing, etc. Nonetheless, restricted research traced up till now on hybrid nanodiamond-graphene and nanodiamond/carbon nanotube based nanocomposites, therefore, future research appears necessary for further precise design varieties, large scale processing, and advanced technological progresses.
In this policy insight, the author lays out the context of the BRI and its role in global development. He also explains why the US should consider working with China on the BRI. The author opines on China’s possible approach and strategy to get global private investors to come on board for the massive BRI projects. He suggests that the global players can establish a third-party market cooperation and coordination mechanism to turn the BRI into a platform for win-win global collaboration.
In this study, the effect of roasting and boiling on the yield and oxidative stability of soya bean oil was investigated. The oil was soxhlet extracted and the oxidative stability was determined by the free fatty acid value, acid value and peroxide value. The results showed that the oil yield, free fatty acid value, acid value and peroxide value were significantly affected by roasting, boiling, and the thermal treatment time. The percentage oil yield in the control oil sample was 18.51%, which increased to 20.24% and 20.73% after boiling and roasting respectively, at 40mins. The corresponding free fatty acid and the peroxide value of the control oil sample were 0.14% and 2.04 meqO2/kg, which increased to 0.82% and 6.60 meqO2/kg by roasting, and 0.47% and 5.62 meqO2/kg by boiling respectively. Thus the oil yield, free fatty acid value, peroxide value, and acid value increased with increasing roasting and boiling time.
The results indicate that roasting provides a higher oil yield than boiling, but boiled oil has higher oxidative stability than roasted oil.
Conflicts are inevitable in any human community, despite the fact that they are never desirable. One of the characteristics of the contemporary world is conflict. Different parties participate in disputes (individuals, organizations, and states). When disputes arise, interventionist methods are put into action. Conflicts arise in a variety of ways, such as disagreement, rage, quarrelling, hatred, destruction, killing, or war, because human requirements are diverse. Conflict takes many different shapes, and so do interventions. Individuals, groups (both local and foreign), and governments can all intervene in a conflict. The media and its functions are up for debate among those who mediate disputes. Can the media be seen as intervening in a dispute, or are they merely performing their mandated duties? The diversity of opinions is what drives conversations in peace journalism. In addition, peace journalism promotes media engagement and intervention in conflict situations in order to lessen and end conflict. Media intervention, according to some critics, is not objective journalism because those in charge of educational information management and journalists are not expected to make decisions about the news; rather, they should just tell it as they see it. Therefore, the purpose of this article is to examine the idea of conflict, the stages of conflict development, interventions in conflicts, and the contentious position of the media in conflicts from an educational information management perspective. Hence, this paper will contribute to the role of educational information management via social media and other new media platforms, which have occasionally been used to hold governments responsible, unite people in protest of violence, plan relief operations, empower people, dissipate tensions via knowledge sharing, and create understanding across boundaries.
Copyright © by EnPress Publisher. All rights reserved.