Using the Intercultural Competence and Inclusion in Education Scale (ICIES), this study examines variations in intercultural competence and inclusion between mainstream and multiethnic high schools. The sample consisted of 384 high school students, aged 17 to 18, from both rural and urban areas in Western Romania, enrolled in grades 11 and 12. The ICIES demonstrated strong reliability, with a Cronbach’s alpha of 0.721. Exploratory factor analysis revealed three distinct dimensions: Intercultural opportunities and activities, Comfort in diverse settings, and Cultural reflection and values. Independent samples t-tests identified significant differences between mainstream and multiethnic schools across several items, with students in multiethnic schools reporting higher levels of intercultural competence and inclusion. These findings highlight the critical role of multicultural educational settings in fostering students’ cultural awareness and inclusive attitudes. This study provides actionable insights for enhancing multicultural education practices and policies, including teacher training programs, inclusive curricula, and extracurricular initiatives that promote intercultural engagement and reduce intergroup biases.
The advent of the COVID-19 pandemic has precipitated a paradigm shift in education, marked by an increasing reliance on technology and virtual platforms. This study delves into the post-pandemic landscape of Islamic higher education at the State Islamic Institute of Palangka Raya, Central Kalimantan, Indonesia, focusing on students’ readiness, attitudes, and interests toward sustained engagement with e-learning. A cohort of 300 students across all semesters of Islamic Education partook in the investigation. Utilising Structural Equation Modelling, the study gauged students’ preparedness, perceptions, and inclinations toward online learning. Results indicate a general readiness among students for online learning, with a pivotal role attributed to technological devices and internet connectivity. Positive attitudes toward online learning were prevalent, with flexibility and accessibility emerging as significant advantages. Moreover, students showed keen interest in online learning, valuing its technological advancements, affordability, and intellectually challenging nature. These findings highlight the digital transformation of traditional teaching methods among Islamic higher education students, who are typically known for their emphasis on direct interaction in teaching and learning. Their receptivity to innovative learning modalities and adaptability to the digital era’s difficulties highlight the need for educational institutions to leverage this enthusiasm. Comprehensive online learning platforms, robust technological support, and a conducive learning environment are advocated to empower Islamic higher education students in navigating the digital landscape and perpetuating their pursuit of knowledge and enlightenment.
The coconut industry has deep historical and economic importance in Sri Lanka, but coconut palms are vulnerable to water stress exacerbated by environmental challenges. This study explored using Sunn hemp (Crotalaria juncea L.) in major coconut-growing soils in Sri Lanka to improve resilience to water stress. The study was conducted at the Coconut Research Institute of Sri Lanka to evaluate the growth of Sunn hemp in prominent coconut soils—gravel, loamy, and sandy—to determine its cover crop potential. Sunn hemp was planted in pots with the three soil types, arranged in a randomized, complete design with 48 replicates. Growth parameters like plant height, shoot/root dry weight, root length, and leaf area were measured at 2, 4, 6, and 8 weeks after planting. Soil type significantly impacted all growth parameters. After 8 weeks, sandy soil showed the highest plant height and root length, while loamy soil showed the highest shoot/root dry weight and leaf area, followed by sandy and gravel soils. Nitrogen content at 6 and 8 weeks was highest in loamy soil plants. In summary, Sunn hemp produces more biomass in sandy soils, while loamy soils promote greater nutrient accumulation and growth. This suggests the suitability of Sunn hemp as a cover crop across major coconut-growing soils in Sri Lanka, improving resilience.
During and after any disaster, a situation report (SITREP) is prepared, based on the Daily Incident Updates (DIU), as an initial decision support information base. It is observed that the decision support system and best practices are not optimized through the available formal reporting on disaster incidents. The rapidly evolving situation, misunderstood terms, inaccurate data and delivery delays of DIU are challenges to the daily SITREP. Multiple stakeholders stipulated with different tasks should be properly understood for the SITREP to initiate relevant response tasks. To fill this research gap, this paper identifies the weaknesses of the current practice and discusses the upgrading of the incident-reporting process using a freely available software tool, enabling further visualization, and producing a comprehensive timely output to share among the stakeholders. In this case, “Power-BI” (a data visualization software) is used as a 360-degree view of useful metrics—in a single place, with real-time updates while being available on all devices for operational decision-making. When a dataset is transformed into several analytical reports and dashboards, it can be easily shared with the target users and action groups. This article analyzed two sources of data, namely the Disaster Management Center (DMC) and the National Disaster Relief Service Center (NDRSC) of Sri Lanka. Senior managers of disaster emergencies were interviewed and explored social media to develop a scheme of best practices for disaster reporting, starting from just before the occurrence, and following the unfolding sequence of the disasters. Using a variety of remotely acquired imageries, rapid mapping, grading, and delineating impacts of natural disasters, were made available to concerned users.
This study examined the impact of aluminium doping on the structural, electrical, and magnetic properties of Li(0.5)Co(0.75)AlxFe(2−x)O4 spinel ferrites (x =0.15 to 0.60). The samples were synthesised using the sol-gel auto-combustion technique, and they were examined using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), dielectric measurements, and vibrating sample magnetometry (VSM). All samples possessed a single-phase cubic spinel structure with Fd-3m space group, according to XRD analyses. SEM images showed the creation of homogeneous particles with an average size of about 21 nm. All samples had spinel ferrite phases, confirmed from FTIR spectra. DC electrical conductivity studies showed that the conductivity increased with increasing aluminium content up to x = 0.45 before dropping at x = 0.60. The maximum saturation magnetization value was found at x = 0.45, according to VSM measurements, which demonstrated that the magnetic characteristics were strongly correlated with the amount of aluminium.
Copyright © by EnPress Publisher. All rights reserved.