This study examines the spatial distribution of consumption competitiveness and carrying capacity across regions, exploring their interrelationship and implications for sustainable regional development. An evaluation index system is constructed for both consumption competitiveness and carrying capacity using a range of economic, social, and environmental indicators. We apply this framework to regional data in China and analyze the resultant spatial patterns. The findings reveal significant regional disparities: areas with strong consumption competitiveness are often concentrated in economically developed regions, while high carrying capacity is notable in less populated or resource-rich areas. Notably, a mismatch emerges in some regions—high consumer demand is not always supported by adequate carrying capacity, and vice versa. These disparities highlight potential sustainability challenges and opportunities. In the discussion, we address reasons behind the spatial mismatch and propose policy implications to better align consumer market growth with regional resource and environmental capacity. The paper concludes that integrating consumption-driven growth strategies with carrying capacity considerations is essential for balanced and sustainable regional development.
This study provides an empirical examination of the design and modification of China’s urban social security programme. In doing so, this study complements the popular assumption regarding the correlation between economic growth and social security development. Focusing on the economic and political motivations behind the ruling party’s decision to implement social security, this study first discusses the modification of urban social security and welfare in China. It then empirically demonstrates the mechanisms behind the system’s operation. This study proposes the following hypothesis: in a country like China, a change in the doctrine of the ruling party will affect government alliances, negating the positive impact of economic growth on the development of social security. In demonstrating this hypothesis, this study identifies a political precondition impacting the explanatory power of popular conceptions of social security development.
Helical deep hole drilling is a process frequently used in industrial applications to produce bores with a large length to diameter ratio. For better cooling and lubrication, the deep drilling oil is fed directly into the bore hole via two internal cooling channels. Due to the inaccessibility of the cutting area, experimental investigations that provide information on the actual machining and cooling behavior are difficult to carry out. In this paper, the distribution of the deep drilling oil is investigated both experimentally and simulatively and the results are evaluated. For the Computational Fluid Dynamics (CFD) simulation, two different turbulence models, i.e. the RANS k-ω-SST and hybrid SAS-SST model, are used and compared. Thereby, the actual used deep drilling oil is modelled instead of using fluid dynamic parameters of water, as is often the case. With the hybrid SAS-SST model, the flow could be analyzed much better than with the RANS k-ω-SST model and thus the processes that take place during helical deep drilling could be simulated with realistic details. Both the experimental and the simulative results show that the deep drilling oil movement is almost exclusively generated by the tool rotation. At the tool’s cutting edges and in the flute, the flow velocity drops to zero for the most part, so that no efficient cooling and lubrication could take place there. In addition, cavitation bubbles form and implode, concluding in the assumption that the process heat is not adequately dissipated and the removal of chips is adversely affected, which in turn can affect the service life of the tool and the bore quality. The carried out investigations show that the application of CFD simulation is an important research instrument in machining technology and that there is still great potential in the area of tool and process optimization.
This study explores the spatial distribution pattern of educational infrastructure development across districts and cities in North Sumatra, identifying significant disparities between urban and rural areas. The study aims to: (1) determine the distribution of educational development across districts and cities, (2) analyze global spatial autocorrelation, and (3) identify priority locations for educational development policies in North Sumatra Province. The methodology includes quantile analysis, Moran’s Global Index, and Local Indicators of Spatial Autocorrelation (LISA) using GeoDa software to address spatial autocorrelation. The results indicate that there are nine areas with a low School Participation Rate Index (SPRI), eleven areas with a low School Facilities and Infrastructure Index (SFII), and eleven areas with a low Regional Education Index (REI). Spatial autocorrelation analysis reveals that SFII shows positive spatial autocorrelation, while SPRI and REI exhibit negative spatial autocorrelation, indicating a high level of inequality between regions. Labuhan Batu Selatan and Labuhan Batu are identified as priorities for the provincial government in overseeing educational development policies.
Accurate temperature control during the induction heating process of carbon fiber reinforced polymer (CFRP) is crucial for the curing effect of the material. This paper first builds a finite element model of induction heating, which combines the actual fiber structure and resin matrix, and systematically analyzes the heating mechanism and temperature field distribution of CFRP during the heating process. Based on the temperature distribution and variation observed in the material heating process, a PID control method optimized by the sparrow search algorithm is proposed, which effectively reduces the temperature overshoot and improves the response speed. The experiment verifies the effectiveness of the algorithm in controlling the temperature of the CFRP plate during the induction heating process. This study provides an effective control strategy and research method to improve the accuracy of temperature control in the induction heating process of CFRP, which helps to improve the results in this field.
The Ecuadorian electricity sector encompasses generation, transmission, distribution and sales. Since the change of the Constitution in Ecuador in 2008, the sector has opted to employ a centralized model. The present research aims to measure the efficiency level of the Ecuadorian electricity sector during the period 2012–2021, using a DEA-NETWORK methodology, which allows examining and integrating each of the phases defined above through intermediate inputs, which are inputs in subsequent phases and outputs of some other phases. These intermediate inputs are essential for analyzing efficiency from a global view of the system. For research purposes, the Ecuadorian electricity sector was divided into 9 planning zones. The results revealed that the efficiency of zones 6 and 8 had the greatest impact on the overall efficiency of the Ecuadorian electricity sector during the period 2012–2015. On the other hand, the distribution phase is the most efficient with an index of 0.9605, followed by sales with an index of 0.6251. It is also concluded that the most inefficient phases are generation and transmission, thus verifying the problems caused by the use of a centralized model.
Copyright © by EnPress Publisher. All rights reserved.