Competition in the telecommunications market has significant benefits and impacts in various fields of society such as education, health and the economy. Therefore, it is key not only to monitor the behavior of the concentration of the telecommunications market but also to forecast it to guarantee an adequate level of competition. This work aims to forecast the Linda index of the telecommunications market based on an ARIMA time series model. To achieve this, we obtain data on traffic, revenue, and access from companies in the telecommunications market over a decade and use them to construct the Linda index. The Linda index allows us to measure the possible existence of oligopoly and the inequality between different market shares. The data is modeled through an ARIMA time series to finally predict the future values of the Linda index. The results show that the Colombian telecommunications market has a slight concentration that can affect the level of competition.
Recognizing the importance of competition analysis in telecommunications markets is essential to improve conditions for users and companies. Several indices in the literature assess competition in these markets, mainly through company concentration. Artificial Intelligence (AI) emerges as an effective solution to process large volumes of data and manually detect patterns that are difficult to identify. This article presents an AI model based on the LINDA indicator to predict whether oligopolies exist. The objective is to offer a valuable tool for analysts and professionals in the sector. The model uses the traffic produced, the reported revenues, and the number of users as input variables. As output parameters of the model, the LINDA index is obtained according to the information reported by the operators, the prediction using Long-Short Term Memory (LSTM) for the input variables, and finally, the prediction of the LINDA index according to the prediction obtained by the LSTM model. The obtained Mean Absolute Percentage Error (MAPE) levels indicate that the proposed strategy can be an effective tool for forecasting the dynamic fluctuations of the communications market.
Copyright © by EnPress Publisher. All rights reserved.