The destructive geohazard of landslides produces significant economic and environmental damages and social effects. State-of-the-art advances in landslide detection and monitoring are made possible through the integration of increased Earth Observation (EO) technologies and Deep Learning (DL) methods with traditional mapping methods. This assessment examines the EO and DL union for landslide detection by summarizing knowledge from more than 500 scholarly works. The research included examinations of studies that combined satellite remote sensing information, including Synthetic Aperture Radar (SAR) and multispectral imaging, with up-to-date Deep Learning models, particularly Convolutional Neural Networks (CNNs) and their U-Net versions. The research categorizes the examined studies into groups based on their methodological development, spatial extent, and validation techniques. Real-time EO data monitoring capabilities become more extensive through their use, but DL models perform automated feature recognition, which enhances accuracy in detection tasks. The research faces three critical problems: the deficiency of training data quantity for building stable models, the need to improve understanding of AI’s predictions, and its capacity to function across diverse geographical landscapes. We introduce a combined approach that uses multi-source EO data alongside DL models incorporating physical laws to improve the evaluation and transferability between different platforms. Incorporating explainable AI (XAI) technology and active learning methods reduces the uninterpretable aspects of deep learning models, thereby improving the trustworthiness of automated landslide maps. The review highlights the need for a common agreement on datasets, benchmark standards, and interdisciplinary team efforts to advance the research topic. Research efforts in the future must combine semi-supervised learning approaches with synthetic data creation and real-time hazardous event predictions to optimise EO-DL framework deployments regarding landslide danger management. This study integrates EO and AI analysis methods to develop future landslide surveillance systems that aid in reducing disasters amid the current acceleration of climate change.
The integration of Big Earth Data and Artificial Intelligence (AI) has revolutionized geological and mineral mapping by delivering enhanced accuracy, efficiency, and scalability in analyzing large-scale remote sensing datasets. This study appraisals the application of advanced AI techniques, including machine learning and deep learning models such as Convolutional Neural Networks (CNNs), to multispectral and hyperspectral data for the identification and classification of geological formations and mineral deposits. The manuscript provides a critical analysis of AI’s capabilities, emphasizing its current significance and potential as demonstrated by organizations like NASA in managing complex geospatial datasets. A detailed examination of selected AI methodologies, criteria for case selection, and ethical and social impacts enriches the discussion, addressing gaps in the responsible application of AI in geosciences. The findings highlight notable improvements in detecting complex spatial patterns and subtle spectral signatures, advancing the generation of precise geological maps. Quantitative analyses compare AI-driven approaches with traditional techniques, underscoring their superiority in performance metrics such as accuracy and computational efficiency. The study also proposes solutions to challenges such as data quality, model transparency, and computational demands. By integrating enhanced visual aids and practical case studies, the research underscores its innovations in algorithmic breakthroughs and geospatial data integration. These contributions advance the growing body of knowledge in Big Earth Data and geosciences, setting a foundation for responsible, equitable, and impactful future applications of AI in geological and mineral mapping.
In this study, optical and microwave satellite observations are integrated to estimate soil moisture at the same spatial resolution as the optical sensors (5km here) and applied for drought analysis in the continental United States. A new refined model is proposed to include auxiliary data like soil texture, topography, surface types, accumulated precipitation, in addition to Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) used in the traditional universal triangle method. It is found the new proposed soil moisture model using accumulated precipitation demonstrated close agreements with the U.S. Drought Monitor (USDM) spatial patterns. Currently, the USDM is providing a weekly map. Recently, “flash” drought concept appears. To obtain drought map on daily basis, LST is derived from microwave observations and downscaled to the same resolution as the thermal infrared LST product and used to fill the gaps due to clouds in optical LST data. With the integrated daily LST available under nearly all weather conditions, daily soil moisture can be estimated at relatively higher spatial resolution than those traditionally derived from passive microwave sensors, thus drought maps based on soil moisture anomalies can be obtained on daily basis and made the flash drought analysis and monitoring become possible.
This study explores how public relations (PR) can give universities an edge in today’s competitive landscape. By examining past research, conducting interviews in 10 diverse cities in Vietnam, and analyzing case studies, it reveals the powerful link between PR strategies and student involvement. The research shows that well-crafted PR activities, tailored to different student groups and utilizing digital platforms, significantly impact student perceptions and enrollment decisions. It delves deeper than simply confirming PR’s effectiveness, offering insights into how specific PR tactics can resonate with student needs and expectations. Furthermore, it explores how PR influences student retention, highlighting the long-term benefits for universities. This research is a valuable tool for institutions seeking to thrive. By understanding the power of PR in shaping student decisions, universities can tailor their outreach efforts more effectively. Additionally, the study emphasizes the lasting advantages of a strategic PR approach, contributing to a broader discussion on its importance in higher education. Ultimately, these findings benefit both institutions and students, who can expect improved transparency, engagement, and communication within their academic communities.
With the rapid increase in electric bicycle (e-bikes) use, the rate of associated traffic accidents has also escalated. Prior studies have extensively examined e-bike riders’ injury risks, yet there is a limited understanding of how their behavior contributes to these accidents. This study aims to explore the relationship between e-bike riders’ risk-taking behaviors and the incidence of traffic accidents, and to propose targeted safety measures based on these insights. Utilizing a mixed-methods approach, this research integrates quantitative data from traffic accident reports and qualitative observations from naturalistic studies. The study employs a binary logistic regression model to analyze risk factors and uses observational data to substantiate the model findings. The analysis reveals that assertive driving behaviors among e-bike riders, such as running red lights and speeding, significantly contribute to the high rate of accidents. Moreover, the lack of protective gear and inadequate safety training are identified as critical factors increasing the risk of severe injuries. The study concludes that comprehensive policy interventions, including stricter enforcement of traffic laws and mandatory safety training for e-bike riders, are essential to mitigate the risks associated with e-bike use. The findings advocate for an integrated approach to urban traffic management that enhances the safety of all road users, particularly vulnerable e-bike riders.
Purpose: Kindergartens are an important educational environment for the development of children at an early age, and they also play a crucial role in developing the values of sustainable development. The purpose of this study is to investigate kindergarten teachers’ perceptions of observable and sustainable development practices. Design, methodology, approach: Semi-structured interviews were conducted with 302 Saudi kindergarten teachers. Additionally, observation cards were utilized to collect data on actual practices of sustainable development in kindergartens. Data were analyzed using Nvivo12, a qualitative data analysis software, and descriptive analysis methods. The main themes were produced first, and then the perspectives were organized around them. Finding: The impact of social and cultural factors on the development of values, the lack of resources available to implement educational activities, and teacher awareness and training gaps were found to be the main barriers to the development of sustainable development values in kindergartens. Originality, value: To the best of the author’s knowledge, this is the first study in Saudi Arabia that has looked into the environmental and social perceptions of early childhood teachers about sustainable development practices, so the study’s findings can highlight the importance of reorienting teacher education programs toward sustainability in order to bridge knowledge and practice gaps.
Copyright © by EnPress Publisher. All rights reserved.