The coconut industry has deep historical and economic importance in Sri Lanka, but coconut palms are vulnerable to water stress exacerbated by environmental challenges. This study explored using Sunn hemp (Crotalaria juncea L.) in major coconut-growing soils in Sri Lanka to improve resilience to water stress. The study was conducted at the Coconut Research Institute of Sri Lanka to evaluate the growth of Sunn hemp in prominent coconut soils—gravel, loamy, and sandy—to determine its cover crop potential. Sunn hemp was planted in pots with the three soil types, arranged in a randomized, complete design with 48 replicates. Growth parameters like plant height, shoot/root dry weight, root length, and leaf area were measured at 2, 4, 6, and 8 weeks after planting. Soil type significantly impacted all growth parameters. After 8 weeks, sandy soil showed the highest plant height and root length, while loamy soil showed the highest shoot/root dry weight and leaf area, followed by sandy and gravel soils. Nitrogen content at 6 and 8 weeks was highest in loamy soil plants. In summary, Sunn hemp produces more biomass in sandy soils, while loamy soils promote greater nutrient accumulation and growth. This suggests the suitability of Sunn hemp as a cover crop across major coconut-growing soils in Sri Lanka, improving resilience.
The exploitation of timber has had a profound impact on tropical forest areas and their structures. This study assessed the effect of selective logging on natural regeneration and soil characteristics in post-loading bay sites at the Pra-Anum forest reserve in Ghana, West Africa. The results showed no difference in the number of species enumerated in the loading bays and the undisturbed area. More trees were observed in the RAT and RNT plots than in the undisturbed area. Relative to the RAT plot, species on the RNT and the undisturbed area were less diverse and less evenly distributed. Mean tree height, diameter, and basal area were higher in the RAT and RNT plots than in the undisturbed plots. Soil bulk density was lower in the RAT and undisturbed plot than in the RAT plot and increased with increased depth. Soil organic matter was 44% and 27% more in the undisturbed and RAT plots, respectively, than in the RNT plot and accounted for 84.75%, 83.97% and 45.33% of variations in soil bulk density, pH, and CEC. The study provides insight into the need to rehabilitate highly disturbed areas in forests, particularly the addition of topsoil on loading bays, skid trails, roads, and gaps after logging to improve the productivity of the forest soils.
The impact of human activities on the quality of urban environment has become increasingly prominent and urban soil pollution problems on the health of local residents also gradually prominent. In addition, the study of heavy metal pollution in urban surface soil is an important part of the evolution model of urban geological environment so it is necessary to analyze the heavy metal pollution in urban soil. In this paper, the data of the given samples are processed and analyzed by MATLAB software and EXCEL spreadsheet. The three - dimensional image model and the planar model of metal element space are established by interpolation method. The spatial distribution of eight kinds of heavy metal elements in the city is presented in detail. For the urban environment, especially the macro-grasp of soil pollution, regulation provides a simple and accurate three-dimensional spatial distribution model of pollutants. Combined with data analysis of the urban area of different areas of heavy metal pollution to make a preliminary judgment. The data show that in the five types of cities, heavy soil pollution is the most serious in industrial areas. A method of imagination of the data analysis is boldly used and then combined with the distribution map, they found a source of pollution. For the spatial distribution of heavy metal elements, this paper uses EXCEL to calculate the data and MATLAB to map the data which showed a detailed and intuitive distribution map according to the distribution map can be analyzed in different areas of pollution; For the second question, this paper uses a method of design to deal with the data, part of the data for the results of the more effective show to determine the cause of pollution. For the third question, this article will be more serious pollution or a wider range of local screening, analysis, and then speculate the location of pollution sources. For other pollution information, this article is based on the modeling process encountered in the thought of the factors given.
Banana (Musa spp.) productivity is limited by sodic soils, which impairs root growth and nutrient uptake. Analyzing root traits under stress conditions can aid in identifying tolerant genotypes. This study investigates the root morphological traits of banana cultivars under sodic soil stress conditions using Rhizovision software. The pot culture experiment was laid out in a Completely Randomized Design (CRD) under open field conditions, with treatments comprising the following varieties: Poovan (AAB), Udhayam (ABB), Karpooravalli (ABB), CO 3 (ABB), Kaveri Saba (ABB), Kaveri Kalki (ABB), Kaveri Haritha (ABB), Monthan (ABB), Nendran (AAB), and Rasthali (AAB), each replicated thrice. Parameters such as the number of roots, root tips, diameter, surface area, perimeter, and volume were assessed to evaluate the performance of different cultivars. The findings reveal that Karpooravali and Udhayam cultivars exhibited superior performance in terms of root morphology compared to other cultivars under sodic soil stress. These cultivars displayed increased root proliferation, elongation, and surface area, indicating their resilience to sodic soil stress. The utilization of Rhizovision software facilitated precise measurement and analysis of root traits, providing valuable insights into the adaptation mechanisms of banana cultivars to adverse soil conditions.
In recent years, phytoremediation as a promising ecological restoration technique has emerged. Phytoremediation is a repair method that uses green plants to transfer, contain, or convert contaminants to the environment. Phytoremediation is a heavy metal, organic or radioactive element contaminated soil and water. The results show
that the use of plant absorption, volatilization, root filtration, degradation, stability and other effects, can purify soil
or water pollutants, to achieve the purpose of purifying the environment, so phytoremediation is a great potential, the development of the clean environment Pollution of green technology. The use of plants to repair contaminated soil is a cheap and durable bioremediation technique. The protection and management of Taihu Lake is an indispensable measure for the protection of Taihu Lake water, and the advantages of phytoremedry investment, low freight and
low leakage of pollutants show that its promotion has this unusual significance. This paper expounds the difference
of remediation soil between Taihu Lake Ecological Shelter Forest, and the comparison of the soil capacity of the
experimental tree species. Second, the correlation between the monitoring projects is discussed.
This study applies machine learning methods such as Decision Tree (CART) and Random Forest to classify drought intensity based on meteorological data. The goal of the study was to evaluate the effectiveness of these methods for drought classification and their use in water resource management and agriculture. The methodology involved using two machine learning models that analyzed temperature and humidity indicators, as well as wind speed indicators. The models were trained and tested on real meteorological data to assess their accuracy and identify key factors affecting predictions. Results showed that the Random Forest model achieved the highest accuracy of 94.4% when analyzing temperature and humidity indicators, while the Decision Tree (CART) achieved an accuracy of 93.2%. When analyzing wind speed indicators, the models’ accuracies were 91.3% and 93.0%, respectively. Feature importance revealed that atmospheric pressure, temperature at 2 m, and wind speed are key factors influencing drought intensity. One of the study’s limitations was the insufficient amount of data for high drought levels (classes 4 and 5), indicating the need for further data collection. The innovation of this study lies in the integration of various meteorological parameters to build drought classification models, achieving high prediction accuracy. Unlike previous studies, our approach demonstrates that using a wide range of meteorological data can significantly improve drought classification accuracy. Significant findings include the necessity to expand the dataset and integrate additional climatic parameters to improve models and enhance their reliability.
Copyright © by EnPress Publisher. All rights reserved.