The size effect on the free vibration and bending of a curved FG micro/nanobeam is studied in this paper. Using the Hamilton principle the differential equations and boundary conditions is derived for a nonlocal Euler-Bernoulli curved micro/nanobeam. The material properties vary through radius direction. Using the Navier approach an analytical solution for simply supported boundary conditions is obtained where the power index law of FGM, the curved micro/nanobeam opening angle, the effect of aspect ratio and nonlocal parameter on natural frequencies and the radial and tangential displacements were analyzed. It is concluded that increasing the curved micro/nanobeam opening angle results in decreasing and increasing the frequencies and displacements, respectively. To validate the natural frequencies of curved nanobeam, when the radius of it approaches to infinity, is compared with a straight FG nanobeam and showed a good agreement.
Urban trees are one of the valuable storage in metropolitan areas. Nowadays, a particular attention is paid to the trees and spends million dollars per year to their maintenance. Trees are often subjected to abiotic factors, such as fungi, bacteria, and insects, which lead to decline mechanical strength and wood properties. The objective of this study was to determine the potential degradation of Elm tree wood by Phellinus pomaceus fungi, and Biscogniauxia mediteranae endophyte. Biological decay tests were done according to EN 113 standard and impact bending test in accordance with ASTM-D256-04 standard. The results indicated that with longer incubation time, weight loss increased for both sapwood and heartwood. Fungal deterioration leads to changes in the impact bending. In order to manage street trees, knowing tree characteristics is very important and should be regularly monitored and evaluated in order to identify defects in the trees.
Copyright © by EnPress Publisher. All rights reserved.