The relationship between transport infrastructure and accessibility has long stood as a central research area in regional and transport economics. Often invoked by governments to justify large public spending on infrastructure, the study of this relationship has led to conflicting arguments on the role that transport plays in productivity. This paper expands the existing body of knowledge by adopting a spatial analysis (with spillover effects) that considers the physical effects of investment in terms of accessibility (using distinct metrics). The authors have used the Portuguese experience at regional level over the last 30 years as a case study. The main conclusions are as follows: i) the choice of transport variables matters when explaining productivity, and more complex accessibility indicators are more correlated with; ii) it is important to account for spill-over effects; and iii) the evidence of granger causality is not widespread but depends on the regions.
The role of technology in stimulating economic growth needs to be reexamined considering current heightened economic conditions of Asian developing Economies. This study conducts a comparative analysis of technology proxied by R&D expenditures alongside macroeconomic variables crucial for economic growth. Monthly time-series data from 1990 to 2019 were analyzed using a vector error correction model (VECM), revealing a significant impact of technology on the economic growth of India, Pakistan, and the Philippines. However, in the cases of Indonesia, Malaysia, Thailand, and Bangladesh, macroeconomic indicators were found more crucial to their economic growth. Results of Granger causality underlined the relationship of R&D expenditures and macroeconomic variables with GDP growth rates. Sensitivity analyses endorsed robustness of the results which highlighted the significance and originality of this study in economic growth aligned with sustainable development goals (SDGs) for developing countries.
This study is considered one of the few studies that attempted to explore the relationship between exports and foreign direct investment in the Kingdom of Saudi Arabia. The study aims to determine the nature of the relationship between exports and foreign direct investment in the Kingdom of Saudi Arabia during the period between (1990–2023). Employing Ender’s methodology using cointegration and error correction model. The study also relies on data on Saudi exports and foreign direct investment inflows from the World Bank databases. The results indicate the existence of Cointegration between foreign direct investment (FDI) inflows and the Saudi exports in the period (1990–2023), as for the causal relationship between the two variables, the results showed the causal relation between exports and FDI inflows from the direction of exports only, which means that Saudi exports cause FDI inflows in Saudi Arabia, and the study recommends giving more incentives to attract foreign investors in different sector rather than oil sector, besides improving the logistical services which is vital to any investment attraction strategy.
The main objective of this article is to analyze the relationship between increases in freight costs and inflation in the markets due to the increases reflected in the prices of the products in some economies in destination ports such as the United States, Europe, Japan, South Africa, the United Arab Emirates, New Zealand and South Korea. We use fractionally integrated methods and Granger causality test to calculate the correlation between these indicators. The results indicate that, after a significant drop in inflation in 2020, probably due to the confinement caused by the pandemic, the increases observed in inflation and freight costs are expected to be transitory given their stationary behavior. We also find a close correlation between both indicators in Europe, the United States and South Africa.
India’s economic growth is of significant interest due to its expanding Gross Domestic Product (GDP) and global market influence. This study investigates the interplay between production, trade, carbon dioxide (CO2) emissions, and economic growth in India using Granger causality analysis. Also, the data from 1994 to 2023 were analyzed to explore the relationships among these variables. The results reveal strong positive correlations among production, trade, CO2 emissions, and GDP, with production showing significant associations with export, import, and GDP. Co-integration tests confirm the presence of a long-term relationship among the variables, suggesting their interconnectedness in shaping India’s economic landscape. Regression analysis indicates that production, export, import, United States (US)-India trade, manufacturing cost of energy, and CO2 emissions significantly impact GDP. Moreover, the Vector Error Correction Model (VECM) estimation reveals both short-term and long-term dynamics, highlighting the importance of understanding equilibrium and deviations in economic variables. Overall, this study contributes to a better understanding of the complex interactions driving India’s economic growth and sustainability.
Copyright © by EnPress Publisher. All rights reserved.