The present work conducts a comprehensive thermodynamic analysis of a 150 MWe Integrated Gasification Combined Cycle (IGCC) using Indian coal as the fuel source. The plant layout is modelled and simulated using the “Cycle-Tempo” software. In this study, an innovative approach is employed where the gasifier's bed material is heated by circulating hot water through pipes submerged within the bed. The analysis reveals that increasing the external heat supplied to the gasifier enhances the hydrogen (H2) content in the syngas, improving both its heating value and cold gas efficiency. Additionally, this increase in external heat favourably impacts the Steam-Methane reforming reaction, boosting the H2/CH4 ratio. The thermodynamic results show that the plant achieves an energy efficiency of 44.17% and an exergy efficiency of 40.43%. The study also identifies the condenser as the primary source of energy loss, while the combustor experiences the greatest exergy loss.
Among contemporary computational techniques, Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) are favoured because of their capacity to tackle non-linear modelling and complex stochastic datasets. Nondeterministic models involve some computational intricacies when deciphering real-life problems but always yield better outcomes. For the first time, this study utilized the ANN and ANFIS models for modelling power generation/electric power output (EPO) from databases generated in a combined cycle power plant (CCPP). The study presents a comparative study between ANNs and ANFIS to estimate the power output generation of a combined cycle power plant in Turkey. The inputs of the ANN and ANFIS models are ambient temperature (AT), ambient pressure (AP), relative humidity (RH), and exhaust vacuum (V), correlated with electric power output. Several models were developed to achieve the best architecture as the number of hidden neurons varied for the ANNs, while the training process was conducted for the ANFIS model. A comparison of the developed hybrid models was completed using statistical criteria such as the coefficient of determination (R2), mean average error (MAE), and average absolute deviation (AAD). The R2 of 0.945, MAE of 3.001%, and AAD of 3.722% for the ANN model were compared to those of R2 of 0.9499, MAE of 2.843% and AAD of 2.842% for the ANFIS model. Even though both ANN and ANFIS are relevant in estimating and predicting power production, the ANFIS model exhibits higher superiority compared to the ANN model in accurately estimating the EPO of the CCPP located in Turkey and its environment.
Copyright © by EnPress Publisher. All rights reserved.